

Instrucciones de servicio

Termostatos de baño y termostatos de circulación PRO

P 10, P 20, P 30, RP 3035, RP 2040, RP 2045, RP 1090, RP 2090, RP 10100, RP 240 E, RP 245 E, RP 250 E, RP 290 E, P 2 E

con unidad de mando Base

Fabricante:

LAUDA DR. R. WOBSER GMBH & CO. KG

Laudaplatz 1

97922 Lauda-Königshofen

Alemania

Teléfono: +49 (0)9343 503-0 Correo electrónico: info@lauda.de Internet: https://www.lauda.de

Traducción de las instrucciones de servicio originales

Q4DA-E_13-020-DE-01 Base, 6, es_ES 11/07/2024 © LAUDA 2021

Reemplaza la edición V6R23-21-14, V5R23-22, V4R15-14-13, V04R07, V4R04, V03REV30-29-28-16, V2RE4, V2R03, V1R54, V01R52, V01R48, V01R35

Índice de contenido

1	Segu	ridad		7	
	1.1	Estruct	ura de seguridad de los equipos	7	
	1.2	Requisit	tos de CEM	7	
	1.3	Version	es del software	8	
	1.4	Observ	e las instrucciones de funcionamiento adicionales	8	
	1.5	Uso ade	ecuado	8	
	1.6	Mal uso	o razonablemente previsible	9	
	1.7	Prohibio	ción de modificaciones en el equipo	9	
	1.8	Materia	lles	10	
	1.9	Refrigerante fluorado			
	1.10	Refrige	rante natural	10	
	1.11	Requisit	tos que deben cumplir los líquidos caloportadores	10	
	1.12	Requisit	tos respecto a las mangueras	11	
	1.13	Ámbito	de uso	11	
	1.14	Capacit	tación del personal	11	
	1.15	Equipos	s de protección individual	11	
	1.16	Disposit	tivos de seguridad del equipo	12	
		1.16.1	Protección contra exceso de temperatura	12	
		1.16.2	Protección contra nivel bajo	12	
	1.17	Símbolo	os de advertencia en el equipo	12	
	1.18	8 Estructura de las indicaciones de advertencia			
2	Dese	mbalaje		14	
3	Mont	taje y func	cionamiento	16	
	3.1	Estruct	ura	16	
		3.1.1	Estructura de los termostatos de baño	16	
		3.1.2	Estructura del termostato de circulación	18	
	3.2	Elemen	itos de mando	20	
		3.2.1	Interruptor de alimentación y de seguridad	20	
		3.2.2	Tecla de desbloqueo y temperatura máxima	20	
	3.3	Elemen	itos de funcionamiento	20	
		3.3.1	Circuito hidráulico	20	
		3.3.2	Máquina frigorífica	23	
		3.3.3	Evacuación de calor mediante refrigeración de estructura híbrida	24	
		3.3.4	Recubrimiento de nitrógeno		
		3.3.5	Interfaces de serie y opcionales		
	3.4	Placa de	e características		
4	Ante	s de la pue	esta en servicio	29	

	4.1 Emplazamiento			29	
	4.2	Montaje	e de los módulos de interfaces	31	
	4.3	Interfaz	RS 232	32	
		4.3.1	Cables y prueba de la interfaz RS 232	32	
		4.3.2	Protocolo RS 232	32	
		4.3.3	Cable de conexión RS 485	33	
		4.3.4	Protocolo RS 485	33	
	4.4	Interfaz	Ethernet	34	
		4.4.1	Conexiones a través de la interfaz Ethernet	34	
		4.4.2	Configuración de la interfaz Ethernet	36	
		4.4.3	Velocidad de transmisión de los datos	42	
		4.4.4	Protocolo de la interfaz	43	
	4.5	Coman	dos de escritura y lectura de las interfaces	43	
		4.5.1	Comandos de escritura de la interfaz	43	
		4.5.2	Comandos de lectura de la interfaz	46	
		4.5.3	Mensajes de error del equipo de termorregulación al puesto de mando	50	
	4.6	Montaje	e del termostato de circulación	51	
	4.7	Bastido	res, plataformas ajustables, plataformas de elevación	51	
	4.8	Consun	nidor externo	52	
		4.8.1	Mangueras	52	
		4.8.2	Conexión a aplicación externa	54	
	4.9	Agua de	e refrigeración	56	
		4.9.1	Requisitos respecto al agua de refrigeración	56	
		4.9.2	Conexión del agua de refrigeración	57	
5	Puest	ta en servi	icio	59	
	5.1	Líquidos	s caloportadores LAUDA	59	
	5.2	Llenado	o del equipo	61	
	5.3	Cambio	o/vaciado del líquido caloportador	64	
	5.4	Estable	cimiento del suministro de corriente	65	
	5.5	Puesta (en marcha del equipo	66	
	5.6	Teclas d	de pantalla	67	
	5.7	Estruct	ura del menú de la unidad de mando a distancia Base	68	
	5.8	Ajuste d	de la protección contra exceso de temperatura Tmax	69	
	5.9	Ajuste d	de los límites de temperatura Tih y Til	70	
	5.10	Ajuste del valor de consigna de temperatura T _{set}			
	5.11	Ajustes	básicos	72	
		5.11.1	Modo de seguridad	72	
		5.11.2	Ajustar el volumen de las señales acústicas	75	
		5.11.3	Ajustar el brillo de la pantalla	76	

	5.11.4		Modo de funcionamiento tras una interrupción del suministro eléctrico (arranque automá- tico)		
		5.11.5	Limitar el consumo de corriente	77	
		5.11.6	Seleccionar el idioma del menú	78	
6	Funci	ionamient	·o	79	
	6.1	Instrucc	ciones generales de seguridad	79	
	6.2	Modos	de funcionamiento	81	
	6.3	Ajuste d	de la etapa de la bomba	81	
	6.4	Activac	ión y desactivación del modo de standby y del modo de funcionamiento	82	
	6.5	Definici	ión del límite de salida del controlador	82	
	6.6	Control	externo	83	
		6.6.1	Activación de la regulación externa y desactivación de la regulación interna	83	
		6.6.2	Ajuste de la compensación del valor de consigna	84	
	6.7	Progran	nador	85	
		6.7.1	Nociones básicas	85	
		6.7.2	Iniciar, interrumpir, continuar o finalizar el programa	88	
	6.8	Paráme	tros de regulación	89	
		6.8.1	Fundamentos de la regulación	90	
		6.8.2	Vista general a través de parámetros de regulación internos	92	
		6.8.3	Vista general a través de parámetros de regulación externos	93	
		6.8.4	Acceder al menú de control	94	
		6.8.5	Edición de los parámetros de regulación internos	94	
		6.8.6	Edición de los parámetros de control externos	95	
	6.9	Calibrac	ción del sensor de temperatura	96	
	6.10	Accede	r al estado del equipo	98	
7	Mant	enimiento	0	101	
	7.1	Instrucc	ciones generales de seguridad	101	
	7.2	Interval	os de mantenimiento	102	
	7.3	Limpiez	a del equipo	102	
	7.4	Limpiez	a de los condensadores refrigerados por aire	103	
	7.5	Limpiez	a del condensador refrigerado por agua	104	
	7.6	Compro	obar el líquido caloportador	106	
	7.7	Compro	obación de la protección contra temperatura excesiva	106	
	7.8	Compro	obación de la protección contra nivel bajo	107	
8	Fallos	i		109	
	8.1	Alarmas	s, advertencias y errores	109	
	8.2	Alarmas	5	109	
	8.3	Adverte	encias - Sistema de control	110	
	8.4	Adverte	encias - Sistema de seguridad	112	

	8.5	Advertencias - Smartcool	113
9	Puest	a fuera de servicio	
	9.1	Indicaciones generales para la puesta fuera de servicio	116
	9.2	Cambio/vaciado del líquido caloportador	. 117
10	Elimi	nación de residuos	119
	10.1	Desechar el refrigerante	119
	10.2	Eliminación del aparato	119
	10.3	Desechar embalaje	119
11	Datos	técnicos	120
	11.1	Datos generales	120
	11.2	Potencia de frío y agua de refrigeración	124
	11.3	Refrigerante y peso de llenado	126
	11.4	Valores máximos de consumo de corriente y potencia calorífica	128
	11.5	Curva característica de la bomba	130
12	Acces	orios	131
13	Asped	etos generales	132
	13.1	Derechos de autor	132
	13.2	Modificaciones técnicas	132
	13.3	Condiciones de garantía	132
	13.4	Contacto LAUDA	132
	13.5	Declaración de conformidad	132
	13.6	Devolución de mercancías y declaración de no objeción	136
14	Glosa	rio	137
15	Índice		139

1 Seguridad

1.1 Estructura de seguridad de los equipos

- Los equipos solo pueden utilizarse para su uso apropiado y bajo las condiciones indicadas en este manual de instrucciones. Cualquier otro modo de funcionamiento no se considera conforme a lo estipulado y puede disminuir la protección designada en el equipo.
- Estos equipos no están diseñados para su uso en entornos sanitarios facultativos conforme a DIN EN 60601-1 e IEC 601-1, respectivamente.
- El manual de instrucciones es parte del equipo. Por ello la información de este manual de instrucciones debe estar disponible cerca del equipo.
 Para ello conserve con cuidado este ejemplar del manual de instrucciones
 - En caso de pérdida de este manual de instrucciones, póngase en contacto con el servicio técnico de equipos de termorregulación LAUDA. Encontrará los datos de contacto en 🗞 Capítulo 13.4 «Contacto LAUDA» en la página 132.

Con la utilización del equipo, se generan situaciones peligrosas por alta y baja temperatura, fuego y por la utilización de energía eléctrica. En la medida de lo posible, los peligros del equipo han sido eliminados en el diseño del mismo de acuerdo a las normas correspondientes. Se disminuyen los peligros residuales mediante las siguientes medidas:

- El equipo cuenta con dispositivos de seguridad. Estos dispositivos son decisivos para la seguridad del equipo. Su funcionalidad debe garantizarse mediante las correspondientes actividades de mantenimiento. Los dispositivos de seguridad del equipo se describen en este capítulo "Seguridad".
- El equipo cuenta con símbolos de advertencia. Estos símbolos deben cumplirse en todo momento.
 Los símbolos de advertencia del equipo se describen en este capítulo "Soqueidad"
- En este manual de instrucciones existen instrucciones de seguridad. Estas instrucciones deben tenerse siempre en cuenta.
- Existen ciertos requisitos adicionales en cuanto al personal y a los equipos de protección individual.
 Estos requisitos se describen en este capítulo "Seguridad".

1.2 Requisitos de CEM

Tab. 1: Clasificación conforme a los requisitos de CEM

Equipo	Requisitos respecto a la resistencia a interferencias	Categoría de emisiones	Fuente de alimentación del cliente
Termostato de calefacción	Tabla 2 (industria) según	Categoría de emisiones B	en todo el mundo
	EN 61326-1	según CISPR 11	sin restricciones

Equipo	Requisitos respecto a la resistencia a interferencias	Categoría de emisiones	Fuente de alimentación del cliente
Termostato de refrigeración	Tabla 2 (industria) según EN 61326-1	Categoría de emisiones B según CISPR 11	sólo para la UE Valor de acometida ≥ 100 A
Termostato de refrigeración	Tabla 2 (industria) según EN 61326-1	Categoría de emisiones B según CISPR 11	el resto del mundo (excepto la UE) sin restricciones

1.3 Versiones del software

Este manual de instrucciones es válido para aparatos a partir de las versiones de software siguientes.

Software	Válido a partir de la versión
Sistema de mando Command Touch	1.14
Sistema de mando Base	1.33
Sistema de control	1.36
Sistema de protección	1.25
Sistema de refrigeración	1.42
Bomba	1.01
Módulo de E/S analógicas	3.14
Módulo RS-232/485	3.22
Módulo de E/S digitales	3.14
Válvula magnética	3.06
Módulo EtherCAT	1.06

1.4 Observe las instrucciones de funcionamiento adicionales

Módulos de interfaz

El aparato puede equiparse con módulos de interfaz adicionales. Si se montan y utilizan módulos de interfaz es preciso leer y observar las instrucciones de funcionamiento correspondientes del módulo de interfaz.

1.5 Uso adecuado

Esta sección afecta a:

■ la categoría de equipos «termostato de baño»

Uso previsto

- El termostato de baño (termostato de baño de calefacción y termostato de baño de refrigeración) se debe utilizar exclusivamente para regular la temperatura de líquidos inflamables y no inflamables.
- El termostato de baño de calefacción se puede hacer funcionar con el serpentín de refrigeración montado. De esta manera, el termostato de baño de calefacción se puede emplear para refrigerar líquidos.
- El termostato solo puede funcionar con un conector de red aprobado y específico del país para el suministro de corriente.

Uso no adecuado

Entre otros es considerado como no adecuado el siguiente modo de utilización:

- Uso como equipoo sanitario
- Uso en áreas expuestas al peligro de explosión
- Uso para regular la temperatura de alimentos.

Esta sección afecta a:

la categoría de equipos «termostato de circulación»

Uso previsto

- El termostato de circulación se debe utilizar exclusivamente para regular la temperatura de y bombear líquidos caloportadores inflamables y no inflamables. El líquido caloportador se bombea a través de un circuito externo con una aplicación cerrada de vuelta hacia el termostato.
- El termostato solo puede funcionar con un conector de red aprobado y específico del país para el suministro de corriente.

Uso no adecuado

Entre otros es considerado como no adecuado el siguiente modo de utilización:

- Uso como equipoo sanitario
- Uso en áreas expuestas al peligro de explosión
- Uso para regular la temperatura de alimentos
- Uso con un reactor de vidrio sin protección contra sobrepresión

1.6 Mal uso razonablemente previsible

Entre otros, los siguientes modos de utilización se consideran como mal uso razonablemente previsible:

- Funcionamiento del equipo sin líquido caloportador
- Conexión errónea de mangueras
- Ajuste de una presión errónea de la bomba

1.7 Prohibición de modificaciones en el equipo

Queda prohibida cualquier modificación técnica del equipo por parte del usuario. Las consecuencias de cualquier modificación no autorizada no estarán cubiertas por el servicio al cliente ni la garantía. Los trabajos de servicio solo pueden ser realizados por el servicio de LAUDA o por un socio de servicio autorizado de LAUDA.

1.8 Materiales

Esta sección afecta a:

la categoría de equipos «termostato de baño»

Todas las piezas del equipo que pueden entrar en contacto con el líquido caloportador están fabricadas en materiales de alta calidad adaptados a la temperatura de funcionamiento. Se utilizan aceros inoxidables de alta calidad y plásticos de alta calidad resistentes a la temperatura.

Esta sección afecta a:

la categoría de equipos «termostato de circulación»

Todas las piezas del equipo que pueden entrar en contacto con el líquido caloportador están fabricadas en materiales de alta calidad adaptados a la temperatura de funcionamiento. Se utilizan aceros inoxidables de alta calidad, plásticos de alta calidad resistentes a la temperatura y latón.

1.9 Refrigerante fluorado

Según la versión, los termostatos de refrigeración se hacen funcionar con refrigerante no odorizado (gas fluorado de efecto invernadero). Debido al escaso volumen de llenado y a su ejecución sellada herméticamente, la instalación no debe cumplir ningún requisito especial. La denominación y el volumen de llenado del refrigerante están especificados en la placa de características.

1.10 Refrigerante natural

Según la versión, algunos termostatos de refrigeración se hacen funcionar con refrigerante natural no odorizado. Estos refrigerantes empleados son de tipo combustible. Debido al escaso volumen de llenado y a su ejecución sellada herméticamente, la instalación no debe cumplir ningún requisito especial. La denominación y el volumen de llenado del refrigerante están especificados en la placa de características.

Véanse las indicaciones 🦫 Más información en la página 29

1.11 Requisitos que deben cumplir los líquidos caloportadores

- Los líquidos caloportadores se utilizan para la regulación de la temperatura. Únicamente se permite usar en el equipo líquidos caloportadores de LAUDA. Los líquidos caloportadores LAUDA son líquidos probados y autorizados por la empresa LAUDA DR. R. WOBSER GMBH & CO KG.
- El equipo está diseñado para líquidos caloportadores combustibles de la clase III según la norma DIN 12876-1.
- Los líquidos caloportadores cubren, en cada caso, un rango determinado de temperatura. Este rango de temperatura debe coincidir con el rango de temperatura de su aplicación.

- Al utilizar líquidos caloportadores pueden generarse situaciones peligrosas debido a temperaturas altas y bajas o fuego en el momento de un valor superior o inferior de ciertos umbrales de temperatura o de la ruptura del recipiente y reacción con el líquido caloportador.
- En la hoja de datos de seguridad del líquido caloportador, se encuentran especificados todos los posibles peligros y sus respectivas medidas sobre el manejo del líquido. La hoja de datos de seguridad debe utilizarse, por tanto, para el uso conforme a lo prescrito del equipo.

1.12 Requisitos respecto a las mangueras

Las mangueras para el circuito hidráulico externo deben ser resistentes a:

- el líquido caloportador utilizado,
- la presión en el circuito hidráulico,
- las temperaturas de trabajo altas y bajas.

1.13 Ámbito de uso

El equipo solo debe utilizarse en los siguientes sectores.

- En el ámbito de producción, control de calidad, investigación y desarrollo en el entorno industrial
- Utilización en interiores, no en el exterior

1.14 Capacitación del personal

Personal operario

El personal operario es el personal que ha recibido instrucción del personal especializado referente al uso previsto del aparato según las instrucciones de funcionamiento.

Personal especializado

Determinadas actividades en el aparato deben ser llevadas a cabo solo por personal especializado. El personal especializado es el personal que puede evaluar el funcionamiento y los riesgos del aparato y del uso, basándose en su formación, sus conocimientos y su experiencia.

1.15 Equipos de protección individual

Ropa de protección

Para algunas actividades, se requiere el uso de ropa de protección. Esta ropa de protección debe cumplir los requisitos legales establecidos por la Unión Europea para los equipos de protección individual.

Gafas protectoras

Para algunas actividades, se requiere utilizar gafas protectoras. Estas gafas protectoras deben cumplir los presentes requisitos legales sobre equipos de protección individual de la Unión Europea.

Guantes protectores

Para algunas actividades, se requiere utilizar guantes de protección CE. Estos guantes protectores tienen que cumplir los requisitos legales sobre equipos de protección individual de la Unión Europea.

1.16 Dispositivos de seguridad del equipo

1.16.1 Protección contra exceso de temperatura

La protección contra temperatura excesiva es un dispositivo de seguridad que impide que un valor de temperatura demasiado alto pueda inflamar un líquido caloportador inflamable. A fin de evitar el peligro de incendio, se desconectan todos los componentes del equipo que son relevantes para la seguridad. Además, una señal de alarma avisa de que se ha activado una protección contra temperatura excesiva. La temperatura a la que se produce el disparo del dispositivo de seguridad se debe ajustar en función del líquido caloportador utilizado.

Se recomienda comprobar periódicamente la protección contra exceso de temperatura.

Se puede encontrar más información en Se Capítulo 7.7 «Comprobación de la protección contra temperatura excesiva» en la página 106.

1.16.2 Protección contra nivel bajo

La protección contra nivel bajo es un dispositivo de seguridad que impide que el elemento térmico caliente pueda provocar daños en el equipo o inflamar un líquido caloportador combustible. Si el nivel de llenado de líquido caloportador presente en el equipo cae por debajo de una altura determinada (nivel 2), primeramente se emite una advertencia. Si el nivel de llenado sigue disminuyendo (nivel 1), se activa una alarma. Al mismo tiempo, se desconectan todos los componentes del equipo que son relevantes para la seguridad.

Se recomienda comprobar periódicamente la protección contra nivel bajo.

Se puede encontrar más información en 🕏 Capítulo 7.8 «Comprobación de la protección contra nivel bajo» en la página 107.

1.17 Símbolos de advertencia en el equipo

Caliente

El equipo tiene colocados símbolos de advertencia por «Superficie caliente» en varios lugares. Con este símbolo se advierte de que la superficie en cuestión del equipo está caliente. Estas superficies no pueden tocarse durante el funcionamiento. Para poder tocar estas superficies en otras fases del ciclo de vida del equipo, p. ej., durante el mantenimiento, estas se deben dejar enfriar a temperatura ambiente.

Esta sección afecta a:

equipos con refrigerante natural

Peligro de incendio

■ El símbolo de advertencia «Peligro de incendio» se coloca en los equipos que contienen refrigerantes naturales.

Con este símbolo se advierte de que el refrigerante natural es inflamable.

1.18 Estructura de las indicaciones de advertencia

Señal de advertencia	Clase de peligro	
\triangle	Peligro en general.	
Palabra de advertencia	Significado	
¡PELIGRO!	Esta combinación de símbolo y palabra de advertencia indica una situación de peligro inminente que, si no se evita, provoca la muerte o lesiones graves.	
¡ADVERTENCIA!	Esta combinación de símbolo y palabra de advertencia indica una situación de peligro potencial que, si no se evita, puede provocar la muerte o lesiones graves.	
¡ATENCIÓN!	Esta combinación de símbolo y palabra de advertencia indica una situación de peligro potencial que, si no se evita, puede provocar lesiones leves o moderadas.	
¡AVISO!	Esta combinación de símbolo y palabra de advertencia indica una situación de peligro potencial que, si no se evita, puede provocar daños materiales y ambientales.	

2 Desembalaje

¡PELIGRO! Daños de transporte

Descarga eléctrica

- Antes de la puesta en marcha compruebe minuciosamente el aparato en busca de daños de transporte.
- No ponga nunca el aparato en funcionamiento si ha detectado un daño de transporte.

La instrucción de seguridad indicada a continuación es relevante para los termostatos de baño:

¡AVISO! Caída o vuelco del equipo

Daños en el equipo

 No levante el equipo sujetándolo por el puente de componentes.

La instrucción indicada a continuación es relevante para los termostatos de calefacción:

- Para levantar y trasportar el equipo, sujételo por debajo de los termostatos de calefacción.
- Desembale el equipo.
 - Conserve el embalaje original de su equipo regulador de temperatura para posibles transportes posteriores.
- 2. Compruebe si el equipo y los accesorios están completos o han sufrido daños de transporte inmediatamente después de la entrega.
 - Si contra lo que era de esperar el equipo o los accesorios están dañados, informe de inmediato al transportista para poder elaborar un protocolo de daños y realizar una comprobación de los daños. Del mismo modo, informe inmediatamente al servicio técnico de equipos de termorregulación LAUDA. Encontrará los datos de contacto en Capítulo 13.4 «Contacto LAUDA» en la página 132.

Tab. 2: Accesorios de serie de todos los equipos

aut 217 toposonies de sene de todos los equipos				
Tipo de equipo	Denominación	Cantidad	Número de pedido	
Todos los equipos	Manual de instrucciones	1	YACD0103	
Todos los equipos	Unidad de mando a distancia Base	1	LRT 922	
Equipos con máquina frigorífica	Boquilla para manguera de 10 mm de diámetro exterior con tuerca de racor G3/8" interior	2	EOA 078	

Tab. 3: Accesorios de serie del baño termostático de refrigeración

Tipo de equipo	Denominación	Cantidad	Número de pedido
RP 1090, RP 10100	Tapa para baño	1	HDQ 154
RP 2040, RP 2045, RP 2090	Tapa para baño	1	HDQ 157
RP 3035	Tapa para baño	1	HDQ 156

Tab. 4: Accesorios de serie del baño termostático de calefacción

Tipo de equipo	Denominación	Cantidad	Número de pedido
P10	Tapa para baño	1	HDQ 154
P 20	Tapa para baño	1	HDQ 157
P 30	Tapa para baño	1	HDQ 156

3 Montaje y funcionamiento

3.1 Estructura

3.1.1 Estructura de los termostatos de baño

Vista frontal

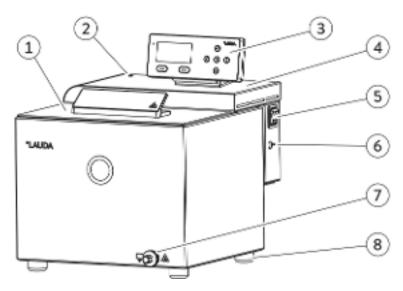


Fig. 1: Termostato de baño de calefacción, vista frontal

- 1 Tapa para baño
- 2 Indicador visual (LED) para mostrar información de funcionamiento y fallos
- 3 Unidad de mando a distancia Base
- 4 Puente de componentes
- 5 Conmutador de alimentación
- 6 Interfaz LiBus para conectar la unidad de mando
- 7 Grifo de vaciado para conectar una manguera
- 8 4 patas

Parte trasera

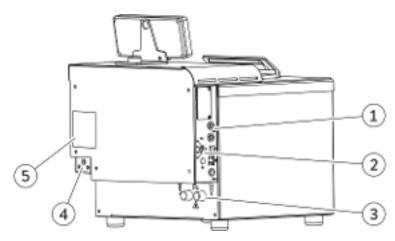


Fig. 2: Termostato de baño de calefacción, vista posterior

- Chapa de interfaces
- Botón giratorio de temperatura máxima para $T_{m\acute{a}x}$ y tecla de desbloqueo Conexiones para la refrigeración del baño (entrada de agua de refrigeración IN; salida de agua de refrigeración OUT) Fuente de alimentación
- Placa de características

3.1.2 Estructura del termostato de circulación

Parte delantera

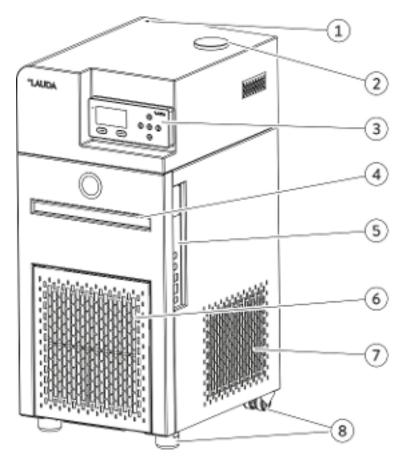


Fig. 3: Termostato de circulación con máquina frigorífica, vista frontal

- Indicador visual (LED) para mostrar información de funcionamiento y
- Racor de llenado del depósito Unidad de mando a distancia Base
- Asidero enrasado
- Interfaces
- Panel frontal (desmontable)
- Rejilla de ventilación
- Patas delante; ruedas detrás

Parte trasera

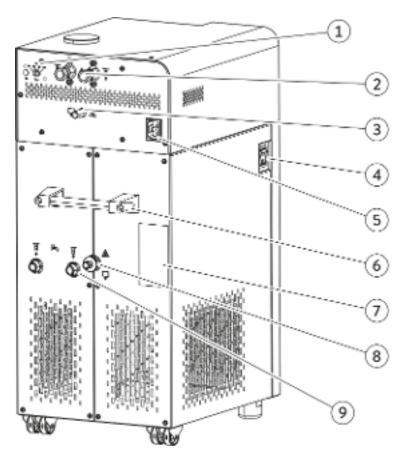


Fig. 4: Termostato de circulación con máquina frigorífica, vista posterior

- 1 Botón giratorio de temperatura máxima para $T_{\text{máx}}$ y tecla de desbloqueo
- 2 Boquillas de la bomba, avance OUT y retroceso IN
- 3 Rebosadero y purga de aire del depósito de compensación
- 4 Conmutador de alimentación
- 5 Fuente de alimentación
- 6 Asa de transporte
- 7 Placa de características
- 8 Grifo de vaciado para conectar una manguera
- 9 Conexiones para la entrada de agua de refrigeración IN y la salida de agua de refrigeración OUT

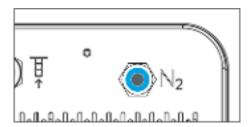


Fig. 5: Conexión de nitrógeno RP 290 E

3.2 Elementos de mando

3.2.1 Interruptor de alimentación y de seguridad

Fig. 6: Interruptor de alimentación

El interruptor de alimentación puede ponerse en las siguientes posiciones:

- Con la posición [1] se enciende el equipo.
- Con la posición [O] se apaga el equipo.

El interruptor de alimentación también actúa a modo de interruptor de seguridad.

- 1. Si se detectan corrientes de fuga, el dispositivo de seguridad se dispara y el interruptor de alimentación salta a la posición [0].
 - ▶ El equipo está desconectado.
- 2. Extraiga el enchufe de la caja del enchufe.
- 3. Solucione la avería de la red de suministro.
- 4. Inserte el cable de alimentación en la caja del enchufe y sitúe el interruptor de alimentación de nuevo en la posición [1].
 - ▶ El equipo se pone en marcha.

Si el interruptor de seguridad vuelve a saltar a la posición [O], póngase en contacto con el servicio técnico de LAUDA para equipos de termorregulación.

3.2.2 Tecla de desbloqueo y temperatura máxima

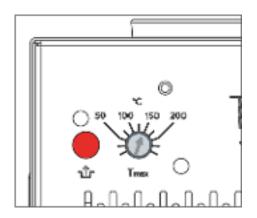


Fig. 7: Tecla de desbloqueo y temperatura máxima

Ajustar la temperatura máxima $T_{máx}$ Tecla de desbloqueo

- Botón giratorio con escala para ajustar la temperatura máxima admisible [Tmáx] con un destornillador. Encontrará información más detallada sobre el ajuste en ♥ Capítulo 5.8 «Ajuste de la protección contra exceso de temperatura Tmax» en la página 69.
- En caso de avería, una vez solucionada presione la tecla [Desbloquear].

3.3 Elementos de funcionamiento

3.3.1 Circuito hidráulico

El circuito hidráulico señala el circuito por el que circula el líquido caloportador.

El circuito se compone esencialmente de los siguientes componentes:

- Baño con líquido caloportador
- Calefacción para calentar el líquido caloportador
- Máquina frigorífica para enfriar el líquido caloportador

Bomba del termostato de baño

El termostato de baño está equipado con una bomba Vario (bomba de presión) para la circulación interna del baño. Esta bomba se puede regular en 8 niveles de bombeo diferentes (o menos en algunos equipos) para optimizar así la circulación del baño, la generación de ruido y la aportación de calor de origen mecánico.

La función automática SteadyFlow del motor de la bomba permite bombear los líquidos caloportadores de alta viscosidad con el mismo caudal volumétrico que si se tratara de líquidos caloportadores de baja viscosidad.

La bomba Vario puede funcionar por un periodo breve con una viscosidad de hasta 150 mm². Durante el funcionamiento normal no se debe superar un valor de 50 mm²/s. La regulación de la temperatura resulta óptima por debajo de 30 mm².

Bomba del termostato de circulación

El termostato de circulación está equipado con una potente bomba Varioflex (bomba de presión/aspiración) para regular la temperatura de la aplicación de manera óptima. Esta bomba se puede regular en 8 niveles de bombeo diferentes (o menos en algunos equipos) para optimizar así el caudal y la presión de alimentación, la generación de ruido y la aportación de calor de origen mecánico.

La función automática SteadyFlow del motor de la bomba permite bombear los líquidos caloportadores de alta viscosidad con el mismo caudal volumétrico que si se tratara de líquidos caloportadores de baja viscosidad.

La bomba Varioflex puede funcionar por un periodo breve con una viscosidad de hasta 150 mm². Durante el funcionamiento normal no se debe superar un valor de 50 mm²/s. La regulación de la temperatura resulta óptima por debajo de 30 mm².

Serpentín de refrigeración del baño

Todos los termostatos de baño de calefacción y los termostatos de circulación de calefacción están equipados de serie con un serpentín para la refrigeración interna del baño.

- En las conexiones del serpentín de refrigeración se puede conectar una fuente de refrigeración, p. ej., un sistema de alimentación de agua tratada.
- Los datos relativos al diámetro interno del serpentín se pueden consultar en 😽 Tab. 42 «Datos sobre el agua de refrigeración» en la página 124.
- La temperatura del baño del termostato se puede reducir (sin aplicaciones externas) hasta aprox. 5 °C por encima de la temperatura del agua de refrigeración.
- Con la válvula de líquido refrigerante LCZ 9771 (con activación por LiBus), que se puede adquirir como accesorio, la alimentación de agua de refrigeración solo se abre cuando es preciso refrigerar.

Funcionamiento del serpentín de refrigeración en un sistema central de agua de refrigeración

¡ATENCIÓN!

Funcionamiento con serpentín de refrigeración, vapor caliente/ salida de agua de refrigeración en ebullición

Escaldadura

 No utilice el serpentín de refrigeración más allá de una temperatura del baño de 95 °C.

En caso de funcionamiento en un sistema central de agua de refrigeración, el uso del serpentín de refrigeración en los termostatos de calefacción PRO (termostatos de baño y termostatos de circulación) está permitido hasta una temperatura del baño de 95 °C. En la práctica, las presiones de funcionamiento reinantes en un sistema central de agua de refrigeración varían notablemente y las tuberías de retorno no están libres de presión. Esto significa que el serpentín de refrigeración no se vacía aunque la alimentación de líquido refrigerante esté cerrada. En consecuencia, si la temperatura es superior al punto de ebullición del agua de refrigeración, los restos de esta presentes en el interior del serpentín de refrigeración se evaporan, lo que afecta muy negativamente al proceso de regulación de la temperatura. Tampoco se puede despreciar el efecto de los posibles golpes de ariete sobre el circuito central de agua de refrigeración y las aplicaciones conectadas a este.

Funcionamiento del serpentín de refrigeración con agua potable

¡ADVERTENCIA!

Funcionamiento con serpentín de refrigeración, golpes de ariete de vapor caliente/vapor de agua caliente a temperaturas del baño por encima de 95 °C

Escaldadura

 El extremo libre de la manguera del serpentín de refrigeración se debe fijar en la salida.

En caso de funcionamiento en una tubería de agua potable con salida sin presión hacia el sistema de aguas residuales, el uso del serpentín de refrigeración en los termostatos de calefacción PRO (termostatos de baño y termostatos de circulación) está permitido hasta una temperatura del baño de 155 °C. En este caso, el funcionamiento de la válvula de líquido refrigerante con agua en un termostato de calefacción PRO por encima de 100 °C resulta seguro porque el agua de refrigeración procedente del serpentín de refrigeración del termostato de calefacción puede salir y no es necesario que se evapore por completo. Si se abre la alimentación de líquido refrigerante y el agua de refrigeración alcanza una temperatura del baño superior a 95 °C en el serpentín de refrigeración, se genera un breve golpe de ariete, motivo por el que es preciso fijar en la salida el extremo libre de la manguera del serpentín de refrigeración. Las mangueras que conducen hacia el serpentín de refrigeración y las que se alejan de este deben presentar una inclinación constante hacia la salida.

La potencia frigorifica del serpentín de refrigeración del baño depende de la temperatura del baño del termostato y de la temperatura del agua de refrigeración. Si en vez de agua se usa aceite como líquido caloportador, se debe partir de la base de que la potencia frigorifica es algo menor en condiciones de temperatura comparables. Si el funcionamiento tiene lugar con temperaturas del baño elevadas (hasta 155 °C), la potencia frigorifica aumenta debido al mayor gradiente de temperatura entre el líquido caloportador y el agua de refrigeración.

3.3.2 Máquina frigorífica

La máquina frigorífica está formada, entre otros, por los componentes siguientes:

Compresor

En la máquina frigorífica se utiliza un compresor de émbolo alternativo. El compresor está protegido por un guardamotor cuyo disparo depende de la temperatura del compresor y del consumo de corriente de este. La conexión del compresor tiene lugar de manera automática, pero también se puede conectar manualmente a través del menú de manejo. Siempre que se produce una avería relevante para la seguridad, la máquina frigorífica se detiene automáticamente.

Evaporador

Un evaporador de serpentines de acero inoxidable absorbe calor del baño interno.

Expansión electrónica

La expansión del refrigerante se efectúa por medio de modernas válvulas de expansión de tipo electrónico. Un método desarrollado y patentado por LAUDA permite regular con una extraordinaria precisión la demanda de frío requerida.

Sistema SmartCool

Forma especial de refrigeración proporcional en combinación con un ventilador regulado. En la refrigeración proporcional, la potencia frigorífica requerida es ajustada en función de la señal del regulador conforme a una relación casi proporcional. Así se ahorra hasta un 75 % de energía en comparación con la refrigeración estándar, consistente en enfriar y compensar el exceso de enfriamiento por medio de la calefacción. Además, si no se demanda refrigeración durante un tiempo prolongado, el automatismo de refrigeración desconecta la máquina frigorífica por completo.

Asistente de autocomprobación

Antes de que se inicie el funcionamiento propiamente dicho, se comprueban todos los parámetros y, en particular, también las vías de desconexión de la activación de la calefacción y los sensores. El sistema no solo muestra en la pantalla mensajes de alarma o de avería, sino que también llama la atención sobre las tareas de mantenimiento, como, p. ej., la limpieza del condensador refrigerado por aire.

Algunas versiones de las máquinas frigoríficas contienen refrigerantes naturales. Estos refrigerantes son de tipo combustible.

ñ

Algunas versiones de las máquinas frigoríficas contienen refrigerantes fluorados.

Los datos técnicos de los distintos termostatos de refrigeración se pueden encontrar en \$ Capítulo 11.2 «Potencia de frío y agua de refrigeración» en la página 124.

3.3.3 Evacuación de calor mediante refrigeración de estructura híbrida

Refrigeración híbrida

El calor procedente de la máquina frigorífica se evacua por medio de un sistema combinado de refrigeración por aire y refrigeración por agua. El usuario puede refrigerar en todo momento por medio de aire o de agua, a su elección. Si el equipo se encuentra en funcionamiento y el usuario abre la alimentación de agua de refrigeración hacia este, el equipo conmuta de manera automática del modo de refrigeración por aire al de refrigeración por agua. Si no se consigue evacuar la suficiente energía térmica a través del agua de refrigeración, el equipo conecta adicionalmente y de manera automática la refrigeración por aire a modo de refuerzo.

- En el modo de refrigeración por aire, la sustancia empleada para refrigerar el equipo es el aire. Para ello se aspira aire del exterior a través del frontal del equipo por medio del ventilador. El aire del exterior se calienta dentro del equipo y se vuelve a evacuar a través de los laterales y de la parte posterior.
- En el modo de refrigeración por agua, el calor se evacua a través del circuito de agua de refrigeración. De manera predeterminada, el caudal de agua de refrigeración no está regulado; no obstante, se puede controlar (conectar/desconectar) por medio del accesorio «Válvula de líquido refrigerante».
- Sin embargo, para refrigerar el compresor también es preciso que el ventilador del condensador refrigerado por aire funcione a un número bajo de revoluciones.

Para que la refrigeración sea eficiente, el agua de refrigeración debe encontrarse al menos $5-10~\rm K$ por debajo de la temperatura ambiente del equipo.

3.3.4 Recubrimiento de nitrógeno

Esta sección es relevante para el aparato RP 290 E.

El recubrimiento de nitrógeno...

- se conduce directamente sobre la superficie del líquido caloportador en el termostato de circulación. A través del rebosadero del aparato sale el nitrógeno.
- reduce la condensación de humedad en el líquido caloportador.
- reduce la oxidación del líquido caloportador.
- permite aumentar el periodo de servicio del líquido caloportador.
- reduce la inflamabilidad de los líquidos caloportadores combustibles.

Tenga en cuenta:

- En el rebosadero del termostato de circulación debe haber conectada una manguera de rebosadero con un recipiente colector; véase ♦ Capítulo 4.8.2 «Conexión a aplicación externa» en la página 54. Si el caudal volumétrico de nitrógeno es demasiado elevado, el líquido caloportador puede ser arrastrado a través del rebosadero del termostato de circulación.
- No está permitido utilizar el recubrimiento de nitrógeno en espacios cerrados. Las instalaciones deben estar bien ventiladas o bien use un sistema de aspiración.
- Si se emplean líquidos caloportadores cerca de la temperatura de su punto de inflamación, deben evitarse las fuentes de ignición cerca de la abertura de llenado y del rebosadero.

Conexión

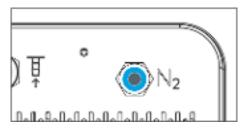
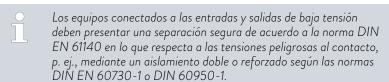


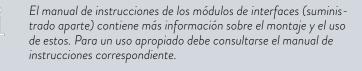
Fig. 8: Conexión para nitrógeno (N₂)

Ajuste del caudal volumétrico

Conexión de tipo "push in" (no requiere herramientas para su uso) en la parte posterior del aparato, apta para mangueras neumáticas de 6 mm (teflón, PE), n.º de artículo de LAUDA RKJ 048. La conexión de tipo "push in" permanece cerrada de manera automática si no tiene insertada una manguera.

Montaje: Basta con insertar la manguera en la conexión.


Desmontaje: La manguera se retira fácilmente tras presionar el anillo azul.


Para ajustar un valor pequeño del caudal volumétrico de nitrógeno es preciso usar un dispositivo dosificador para gases. Este dispositivo dosificador no está incluido en el volumen de suministro. Como dispositivo dosificador se puede utilizar, p. ej., un manorreductor con llave de salida.

 Se recomienda un caudal volumétrico de nitrógeno de entre 0,5 y 5 litros por hora.

3.3.5 Interfaces de serie y opcionales

En las secciones siguientes se ofrece una visión general de las interfaces del aparato incluidas de serie, así como de los módulos de interfaz opcionales.

Interfaces de serie

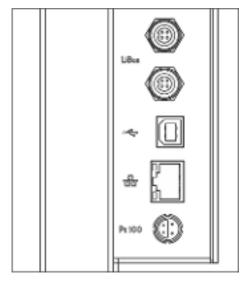


Fig. 9: Chapa de interfaces

- La interfaz LiBus (identificada con el rótulo LiBus) sirve para conectar la unidad de mando a distancia Base o Command Touch.
- La interfaz para dispositivos USB (tipo B) permite la conexión a un PC. Las actualizaciones de software se ejecutan en el aparato a través de esta interfaz USB (solo para actualizaciones; no es una interfaz de proceso).
- La interfaz Ethernet ofrece al cliente la posibilidad de usar el juego de comandos de interfaz de LAUDA para supervisar y controlar los procesos de termorregulación ejecutados con un equipo de termorregulación de LAUDA (interfaz de proceso).
- La interfaz Pt100 (identificada con el rótulo Pt100) sirve para conectar el sensor de temperatura Pt100 externo. Esta interfaz es un casquillo Lemo de tamaño 1S.

Interfaces adicionales

Los equipos pueden completarse con módulos de interfaz adicionales.

- El módulo analógico (n.º de pedido LRZ 912) dispone de un casquillo DIN de 6 polos con 2 entradas y 2 salidas. Las entradas y las salidas se pueden ajustar de manera mutuamente independiente como interfaces de 0 20 mA, 4 20 mA o 0 10 V. Para la alimentación de un sensor externo con electrónica de evaluación se dispone de 20 V en el casquillo.
- El módulo de interfaz RS 232/485 (n.º de pedido LRZ 913) está ejecutado en forma de casquillo SUB-D de 9 polos. Con aislamiento galvánico mediante optoacoplador. Gracias al conjunto de comandos LAUDA, el módulo es compatible con las líneas de equipos ECO, Variocool, Proline, Proline Kryomat, PRO, Integral XT e Integral T. La interfaz RS232 se puede conectar directamente al PC con un cable de contactos 1:1.
- El módulo de contacto (n.º de pedido LRZ 914) está diseñado como conexión de enchufe según NAMUR NE28. Este módulo de contacto está diseñado de manera idéntica al LRZ 915, pero con solo 1 salida y 1 entrada en 2 casquillos DIN. El enchufe de acoplamiento (n.º de pedido EQD 047) y el conector de acoplamiento (n.º de pedido EQS 048) son de 3 polos.
- El módulo de contacto (n.º de pedido LRZ 915) está diseñado como casquillo SUB-D de 15 polos. Cuenta con 3 salidas por contacto de relé (tipo contacto inversor, máx. 30 V/0,2 A) y 3 entradas binarias de control a través de contactos externos libres de potencial.
- Módulo Profibus (n.º de pedido LRZ 917). El sistema de bus Profibus ofrece una elevada velocidad de transmisión de señales, puede conectar hasta 256 equipos y se emplea principalmente en la industria química.
- Módulo EtherCAT (n.º de pedido LRZ 922) con conexión a través de casquillos M8. Módulo EtherCAT (n.º de pedido LRZ 923) con conexión a través de casquillos RJ45. EtherCAT es un bus de campo basado en Ethernet con funcionalidad maestro/esclavo.
- Caja externa de módulos LiBus (n.º de pedido LCZ 9727) con 2 compartimentos de módulos adicionales. El número de interfaces LiBus se puede ampliar mediante la caja de módulos LiBus (LCZ 9727). Así se pueden conectar más módulos. Se puede conectar, p. ej., una válvula solenoide para la regulación del agua de refrigeración o un bloqueo de retroceso.

Se ofrece información más detallada para la conexión y el uso de estas interfaces en el manual de instrucciones correspondiente del módulo de interfaz LAUDA.

3.4 Placa de características

Fig. 10: Placa de características (ejemplo)

En la siguiente tabla, se explican los datos de la placa de características. Determinados datos dependen del tipo de aparato y del equipamiento instalado.

Dato	Descripción
Type:	Tipo de equipo
Order No.:	Número de pedido del equipo
Serial No.:	Número de serie del equipo
Refrigerant I:	Denominación del refrigerante empleado en la máquina frigorífica, nivel 1
Filling charge I:	Volumen de llenado del refrigerante en la máquina frigorífica, nivel 1
PS high pressure I:	Máxima presión de servicio admisible en el lado de alta presión de refrigerante de la máquina frigorífica, nivel 1
PS low pressure I:	Máxima presión de servicio admisible en el lado de baja presión de refrigerante de la máquina frigorifica, nivel 1
Refrigerant II:	Denominación del refrigerante empleado en la máquina frigorífica, nivel 2
Filling charge II:	Volumen de llenado del refrigerante en la máquina frigorífica, nivel 2
PS high pressure II:	Máxima presión de servicio admisible en el lado de alta presión de refrigerante de la máquina frigorífica, nivel 2
PS low pressure II:	Máxima presión de servicio admisible en el lado de baja presión de refrigerante de la máquina frigorífica, nivel 2
Voltage:	El equipo se debe hacer funcionar exclusiva- mente con esta tensión de suministro y a esta frecuencia
Current consumption:	Consumo máximo de corriente del equipo durante el funcionamiento
Protection class:	Grado de protección de IP del equipo
Class acc. to DIN 12876-1:	Norma alemana para equipos eléctricos de laboratorio

4 Antes de la puesta en servicio

4.1 Emplazamiento

;ADVERTENCIA! Caída o vuelco del equipo

Aplastamiento, golpe

- No tumbe el equipo.
- Coloque el equipo sobre una superficie plana y antideslizante con una capacidad de carga suficiente.
- No sitúe el equipo cerca de los bordes de una mesa.

La instrucción indicada a continuación es relevante para los termostatos de calefacción:

Para levantar y trasportar el equipo, sujételo por debajo de los termostatos de calefacción.

La instrucción de seguridad indicada a continuación es relevante para los equipos equipados con máquina frigorífica:

¡ADVERTENCIA! Peligro de sobrepresión por temperatura ambiente demasiado

Lesiones, derrame de refrigerante

Tenga en cuenta la temperatura ambiente admisible.

Las instrucciones de seguridad indicadas a continuación son relevantes para los equipos que funcionan con refrigerante natural:

;ADVERTENCIA!

Mezcla explosiva de gases en caso de fuga en el circuito de refrigerante

Fuego, explosión

Los equipos que contengan menos de 150 g de refrigerante de tipo combustible no deberán cumplir ninguna condición especial de emplazamiento. No obstante, se recomienda un volumen mínimo de 1 m³ por cada 8 g de refrigerante.

ADVERTENCIA!

Recogida de refrigerante en un espacio similar a una cuba

Fuego, explosión

No está permitido emplazar el equipo en un espacio similar a una cuba.

La instrucción de seguridad indicada a continuación es relevante para los termostatos de baño:

¡AVISO! Caída o vuelco del equipo

Daños en el equipo

 No levante el equipo sujetándolo por el puente de componentes.

Tenga en cuenta:

- Según el líquido caloportador y el modo de funcionamiento empleados, se pueden generar vapores irritantes. Procure un sistema de aspiración con capacidad suficiente para estos vapores. Para los termostatos de baño utilice la tapa para baño.
- Tenga en cuenta los requisitos del equipo en cuanto a compatibilidad electromagnética (CEM). Encontrará información más detallada en
 \$\mathcal{C}\$ Capítulo 1.2 «Requisitos de CEM» en la página 7.

Tenga en cuenta estas instrucciones para los equipos con máquina frigorífica:

- El equipo se puede hacer funcionar hasta una temperatura ambiente de 40 °C.
- Una temperatura ambiente superior puede repercutir negativamente en la potencia de frío de los termostatos empleados.
- En caso de puesta en servicio del termostato de refrigeración tras un periodo prolongado de inactividad, este puede necesitar hasta 30 minutos (según la temperatura ambiente y el tipo del equipo) para poder disponer de toda su potencia frigorífica de consigna.
- Después del transporte del equipo frigorifico y de su instalación, si es posible deje pasar 2 horas antes de la puesta en servicio para que el aceite desplazado pueda retornar al cárter de aceite y evitar así que el compresor sufra algún daño.
- El tipo y el volumen de llenado del refrigerante aparecen en la placa de características.
- 1. Coloque el equipo sobre una mesa en una sala apropiada.
- 2. Sitúe el equipo a una cierta distancia de la pared y de los demás objetos \$\ Capítulo 11.1 «Datos generales» en la página 120.

No cubra las aberturas de ventilación.

4.2 Montaje de los módulos de interfaces

El equipo se puede completar opcionalmente con un módulo de interfaces que se introduce en su lateral (medidas de la abertura del compartimento para el módulo: 51 mm x 27 mm).

También se pueden introducir otros módulos en la caja de módulos LiBus (LCZ 9727). La caja de módulos LiBus ofrece 2 compartimentos para módulos y se puede adquirir como accesorio.

Encontrará información más detallada sobre los módulos de interfaces en 🖔 Capítulo 3.3.5 «Interfaces de serie y opcionales» en la página 25.

¡ADVERTENCIA! Contacto con piezas sometidas a tensión eléctrica durante el montaje de módulos

Descarga eléctrica

Desconecte el equipo de la red antes de montar los módulos.

Descripción del montaje de un módulo de interfaces

- 1. Toque una de las chapas pulidas de acero inoxidable del equipo de regulación de la temperatura que están conectadas a tierra a fin de evacuar una posible carga electrostática.
- 2. Apague el equipo de regulación de la temperatura y desenchufe el conector de alimentación eléctrica.
- 3. Saque el módulo del embalaje.
- 4. Los compartimentos modulares están protegidos por una tapa. Retire la tapa con cuidado.
- 5. Separe con cuidado el cable de conexión del bus de la tapa.
- 6. Enchufe el cable de conexión del bus (conector rojo en el casquillo rojo).
 - La clavija y el casquillo están diseñados con protección contra la polaridad inversa.
- 7. Introduzca el módulo en el compartimento y fijelo con los dos tornillos
 - El módulo de interfaces está preparado para el uso.

4.3 Interfaz RS 232

4.3.1 Cables y prueba de la interfaz RS 232

Ordenador					Termostato		
Señal	Casquillo D-sub de 9 polos		Casquillo D-sub de 25 polos		Casquillo D-sub de 9 polos		Señal
	con Hard- ware- Handshake	sin Hard- ware- Handshake	con Hard- ware- Handshake	sin Hard- ware- Handshake	con Hard- ware- Handshake	sin Hard- ware- Handshake	
RxD	2	2	3	3	2	2	TxD
TxD	3	3	2	2	3	3	RxD
DTR	4		20		4		DSR
Señal a tierra	5	5	7	7	5	5	Señal a tierra
DSR	6		6		6		DTR
RTS	7		4		7		CTS
CTS	8		5		8		RTS

Con protocolo de enlace de hardware: Para la conexión de un termostato al PC, utilizar un cable 1:1 (no un cable de módem nulo). La interfaz RS 232 puede conectarse directamente al PC con un cable de contactos 1:1.

Sin protocolo de enlace de hardware: Ajustar el modo de servicio correspondiente en el ordenador.

Observe las siguientes indicaciones:

- Utilizar los cables de conexión blindados.
- Unir el blindaje con la caja del conector.
- Los cables deben separarse del resto del módulo electrónico de forma galvánica.
- No conectar las clavijas no asignadas.

La interfaz RS 232 puede comprobarse de forma sencilla en un ordenador conectado con el sistema operativo Microsoft Windows.

- En Windows[®] 3.11 con el programa "Terminal".
- En Windows® 95/98/NT/XP con el programa "HyperTerminal".

En los sistemas operativos Windows Vista, Windows 7 y Windows 8, el programa "HyperTerminal" ya no forma parte del sistema operativo.

A través de internet se pueden descargar gratuitamente programas de terminal. Estos programas ofrecen funciones similares a las de "Hyper-Terminal" (p. ej., PuTTY o RealTerm). Petición de búsqueda "Puerto de serie del programa terminal".

4.3.2 Protocolo RS 232

Observe las siguientes indicaciones:

- Conexión al casquillo SUB-D de 9 polos
- La interfaz trabaja con 1 bit de parada, sin bit de paridad y con 8 bits de datos
- Velocidad de transmisión alternativa: 2400, 4800, 9600 (ajuste de fábrica) o 19200 baudios.

- La interfaz RS 232 solo puede accionarse con o sin protocolo de enlace de hardware (RTS/CTS). Para esto, deben conectarse mediante puente las clavijas 4 (DSR) y 6 (DTR), así como las clavijas 7 (CTS) y 8 (RTS).
- El comando del ordenador debe cerrarse con un CR, CRLF o LFCR.
- La respuesta de los termostatos se cierran siempre con un CRLF.
- Después de enviar un comando al termostato, debe esperarse la respuesta antes de enviar el siguiente comando. De este modo se consigue una asignación inequívoca de preguntas y respuestas.
 - CR = Retorno de carro (hexadecimal: 0D); LF = Alimentación de línea (hexadecimal: 0A)

Tab. 5: Ejemplo de transferencia de valores de consigna de 30,5 $^{\circ}$ C al termostato.

Ordenador	Termostato	
"OUT_SP_00_30.5"CRLF	⇒	
⇔	"OK"CRLF	

4.3.3 Cable de conexión RS 485

Conexión RS 485

Termostato con casquillo Sub-D de 9 polos					
Contacto	Datos				
1	Datos A (-)				
5	SG (señal a tierra) opcional				
6	Datos B (+)				

Observe las siguientes indicaciones:

- Utilizar los cables de conexión blindados.
- Unir el blindaje con la caja del conector.
- Los cables deben separarse del resto del módulo electrónico de forma galvánica.
- No conectar las clavijas no asignadas.

Terminación

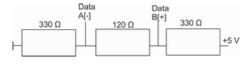


Fig. 11: Terminación RS 485

4.3.4 Protocolo RS 485

El bus RS 485 necesita **forzosamente** una terminación de bus en forma de red de terminación que asegure un estado de reposo definido en las fases de alta impedancia del funcionamiento del bus. La terminación del bus tiene un aspecto similar a este:

Por lo general, esta red de terminación está integrada en la tarjeta insertable del PC (RS 485) y se puede activar por medio de jumpers.

Observe las siguientes indicaciones:

- La interfaz funciona con 1 bit de parada, sin bit de paridad y con 8 bits de datos.
- Velocidad de transmisión alternativa: 2400, 4800, 9600 (ajustes de fábrica) o 19200 baudios.

- Los comandos de RS 485 siempre van precedidos de la dirección del equipo. Hay hasta 127 direcciones posibles. Las direcciones siempre son de tres cifras (desde A000_... hasta A127_...).
- El comando procedente del ordenador debe terminar con un CR.
- La respuesta del aparato de regulación de la temperatura termina siempre con un CR.

CR = Retorno de carro (hexadecimal: 0D)

Ejemplo de la transferencia de valor nominal de 30,5 °C al aparato de regulación de la temperatura. En este ejemplo se utiliza la dirección 15.

Ordenador	Aparato de regulación de la tem- peratura
"A015_OUT_SP_00_30.5"CR	→
←	"A015_OK"CR

4.4 Interfaz Ethernet

4.4.1 Conexiones a través de la interfaz Ethernet

Los equipos de termorregulación de LAUDA cuentan con varias posibilidades para conectarse con un puesto de mando/PC. A través del puesto de mando/PC se puede supervisar y controlar el equipo de termorregulación.

Conexión a través de cable Ethernet

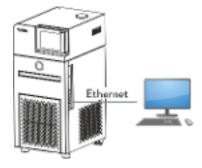


Fig. 12: Conexión a través de cable Ethernet

En la Fig. 12 se representa una conexión directa del equipo de termorregulación de LAUDA con el puesto de mando/PC a través de un cable Ethernet.

Ventaja de esta conexión:

No se necesita ninguna herramienta.

Conexión a través de LAN

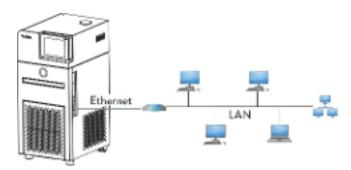


Fig. 13: Conexión a través de LAN

En la Fig. 13 se representa la conexión del equipo de termorregulación con un puesto de mando/PC a través de una red LAN.

Ventajas de esta conexión:

- El equipo de termorregulación se puede controlar desde el puesto de mando/PC que se desee.
- No resulta posible el control simultáneo a través de dos cuadros de mando/PC.

Conexión a través de LAN y WLAN

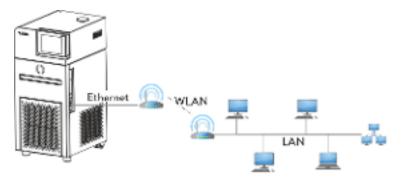


Fig. 14: Conexión a través de LAN y WLAN

En la Fig. 14 se representa la conexión del equipo de termorregulación de LAUDA con un puesto de mando/PC a través de una WLAN integrada en una red LAN. En este caso, el equipo de termorregulación se conecta con el router WLAN por medio de un cable Ethernet convencional. El router WLAN debe estar configurado de modo que establezca una conexión con una LAN a través de otro router WLAN. Este tipo de conexión recibe la denominación de "WLAN bridge". Para conocer cómo se deben configurar los routers WLAN es preciso consultar el manual del router correspondiente.

No resulta posible el control simultáneo a través de dos cuadros de mando.

Ventajas de esta conexión:

- El equipo de termorregulación se puede controlar desde el puesto de mando/PC que se desee.
- El equipo de termorregulación es accesible vía radio, por lo que se puede manejar desde un lugar alejado.

Conexión a través de WLAN

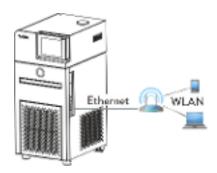


Fig. 15: Conexión a través de WLAN

En la Fig. 15 se representa una conexión directa entre el puesto de mando/PC y el equipo de termorregulación de LAUDA a través de una WLAN. En este caso, el router WLAN se debe configurar como un punto de acceso. Para conocer cómo se debe configurar el router WLAN es preciso consultar el manual del router.

Ventajas de esta conexión:

- El equipo de termorregulación es accesible vía radio, por lo que se puede manejar desde un lugar alejado.
- Se puede usar un cable Ethernet corto.
- No se necesita una red LAN.

Observaciones

Para conexiones como las que se representan en la Fig. 14 y en la Fig. 15 se pueden usar routers WLAN convencionales. Estos deben contar con la función de conexión necesaria y satisfacer los requisitos vigentes en el país en que se hagan funcionar. No obstante, para llevar a cabo una conexión como la representada en la Fig. 14, LAUDA recomienda utilizar un router WLAN de tipo industrial.

4.4.2 Configuración de la interfaz Ethernet

Datos técnicos de la interfaz Ethernet

Dato	Valor	Unidad
Estándar Ethernet	10/100	Mbit

Al final del documento figura un glosario con explicaciones.

Control por PC

La opción de menú Control por PC sirve para habilitar el control por medio de un PC o un puesto de mando. Conecte esta función si desea controlar y supervisar el termostato a través de un puesto de mando externo.

Para poder hacer funcionar conjuntamente el equipo de termorregulación y el puesto de mando en una red local (LAN), primero se debe configurar la interfaz Ethernet.

La interfaz Ethernet se puede configurar de dos maneras:

Obtener automáticamente los ajustes de la LAN

 Para ello es condición indispensable contar con un servidor DHCP en la red local (LAN). En caso de conexión directa, el puesto de mando debe ser compatible con el estándar de IP automática.

Configurar manualmente los ajustes de la LAN La configuración se debe efectuar manualmente si no se dispone de un servidor DHCP, si hay incompatibilidad con el estándar de IP automática o si se desea usar la interfaz Ethernet con direcciones IP fijas.

Configurar manualmente los ajustes de la LAN

- 1. Conecte el equipo de termorregulación.
- 2. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 3. Presione la [tecla de introducción de datos] para acceder al menú.
- **4.** Use las teclas de cursor para seleccionar las opciones de menú Parámetros → Ajustes básicos → Ethernet → Ajustes de la LAN → Cliente DHCP y confirme con [OK].
 - ► En la pantalla se muestras las opciones [Desc] y [Con].
- 5. Elija la opción [Desc] y confirme con [OK].
 - Se abre la ventana Dirección IP local. El cursor señala el campo de entrada.
- 6. Confirme el campo de entrada con [OK].
 - ▶ Se abre la ventana de introducción de datos Dirección IP local .
- 7. Escriba los valores numéricos que correspondan, p. ej., 120.0.0.13. Los valores numéricos se escriben byte a byte. De izquierda a derecha, desde el byte 4 hasta el byte 1. Confirme cada byte con [OK].
- 8. Una vez introducidos los valores numéricos, pulse la softkey [Aplicar].
 - ▶ Se abre la ventana de introducción de datos [Máscara local].
- 9. Escriba los valores numéricos. Los valores numéricos se escriben byte a byte. De izquierda a derecha, desde el byte 4 hasta el byte 1. Confirme cada byte con [OK].
- 10. Una vez introducidos los valores numéricos, pulse la softkey [Aplicar].
 - ▶ Se abre la ventana [Cliente DHCP].
- 11. Desplácese hasta los valores numéricos de la opción de menú [Puerta de enlace] y confirme con [OK].
- 12. Escriba los valores numéricos. Los valores numéricos se escriben byte a byte. De izquierda a derecha, desde el byte 4 hasta el byte 1. Confirme cada byte con [OK].
 - Si no conoce estos valores numéricos, pídale a su departamento de TI que se los facilite. Si escribe algún valor numérico erróneo, no se puede introducir la [Máscara local].
- 13. Una vez introducidos los valores numéricos, pulse la softkey [Aplicar].
 - Se muestran los valores numéricos introducidos para la [dirección IP local], la [máscara local] y la [puerta de enlace].

- 14. Use el botón izquierdo del ratón para subir un nivel de menú y acceder a la opción de menú Control por PC y a continuación confirme con [OK].
 - ► En la pantalla se muestras las opciones [Sí] y [No].
- 15. Elija la opción [Sí] y confirme con [OK].
 - ▶ El control a través del puesto de mando está activado.
- 16. Desconecte el equipo de termorregulación.
- 17. Conecte la interfaz Ethernet del equipo de termorregulación tal como se muestra desde la Fig. 13 hasta la Fig. 15. Utilice un cable Ethernet convencional (cable patch).
- 18. Conecte el equipo de termorregulación.
- 19. Pruebe la conexión con 🔖 «Comprobación de la red LAN» en la página 39 o 🔖 «Comprobación de la red LAN y de la interfaz de proceso» en la página 40.
 - Tras conmutar el [cliente DHCP] de [Con] a [Desc], todos los valores numéricos se restablecen a 0. 0. 0. 0.
 - Si entre el equipo de termorregulación y el PC se utiliza un **switch**, siga el mismo procedimiento (configurar manualmente los ajustes de la LAN).
 - Si se crea una conexión Ethernet directa entre el puesto de mando y el equipo de termorregulación, hasta que la conexión quede establecida pueden transcurrir entre 1 y 2 minutos.

Obtener automáticamente los ajustes de la LAN

- 1. Conecte el equipo de termorregulación.
- 2. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 3. Presione la [tecla de introducción de datos] para acceder al menú.
- 4. Use las teclas de cursor para seleccionar las opciones de menú Parámetros → Ajustes básicos → Ethernet → Ajustes de la LAN → Cliente DHCP y confirme con [OK].
 - ▶ En la pantalla se muestras las opciones [Desc] y [Con].
- 5. Elija la opción [Con] y confirme con [OK].
 - ▶ El cliente DHCP está activo. La configuración de la interfaz Ethernet se ejecuta de manera automática.
- 6. En el menú [Control por PC], elija la entrada [Sí].
 - ▶ El control a través del puesto de mando está activado.
- 7. Desconecte el equipo de termorregulación.
- 8. Conecte la interfaz Ethernet del equipo de termorregulación tal como se muestra desde la Fig. 13 hasta la Fig. 15. Utilice un cable Ethernet convencional (cable patch).
- 9. Conecte el equipo de termorregulación.

10. Pruebe la conexión con 🔖 «Comprobación de la red LAN» en la página 39 o 🔖 «Comprobación de la red LAN y de la interfaz de proceso» en la página 40.

Comprobación de la red LAN

- 1. En un PC con el sistema operativo Microsoft Windows, escriba cmd. exe → para iniciar el procesador de comandos de Windows.
 - Se abre la ventana de introducción de datos.
- 2. Para llevar a cabo la comprobación cuenta con dos posibilidades:
 - Escriba el comando ping junto con la dirección IP.

 ping XXX.XXX.XXX.XXX.

 Donde pone "XXX.XXX.XXX.XXX" debe figurar la dirección IP que se escribió al configurar la interfaz Ethernet.

 O hien
 - Escriba el comando ping junto con el número de serie del aparato de regulación de la temperatura (posibilidad disponible a partir de la versión 1.36 del software del sistema de regulación).

 ping número_de_serie+7
 - ➤ Si la interfaz Ethernet está configurada y conectada correctamente, al cabo de un tiempo muy breve se reciben cuatro respuestas procedentes de la interfaz. Véase Fig. 16.

```
Administrator: C:\Windows\system32\cmd.exe

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Alle Rechte vorbehalten.

C:\Users\Knoll>ping 172.17.20.22

Ping wird ausgeführt für 172.17.20.22 mit 32 Bytes Daten:
Antwort von 172.17.20.22: Bytes=32 Zeit=1ms IIL=64
Antwort von 172.17.20.22: Bytes=32 Zeit<1ms IIL=64
Ping-Statistik für 172.17.20.22:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0
(0z Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 0ms, Maximum = 1ms, Mittelwert = 0ms

C:\Users\Knoll>
```

Fig. 16: Ejemplo de entrada del comando ping

Comprobación de la red LAN y de la interfaz de proceso

La conexión con la interfaz se puede comprobar de manera sencilla con un PC que disponga del sistema operativo Microsoft Windows.

- En Windows 3.11, con el programa "Terminal".
- En Windows 95/98/NT/XP, con el programa "HyperTerminal".
- En los sistemas operativos Windows Vista, Windows 7, Windows 8 y Windows 10, el programa "HyperTerminal"* ya no forma parte del sistema operativo.
 - * Puede encontrar programas de terminal en Internet como software gratuito. Estos programas ofrecen funciones similares a las de "HyperTerminal" (p. ej., PuTTY o RealTerm). Petición de búsqueda "Puerto de serie del programa terminal".

Comprobación con RealTerm

- 1. En un PC que disponga del sistema operativo Microsoft Windows, inicie el programa "HyperTerminal" o "Programa terminal".
 - Se abre la ventana de introducción de datos.



Fig. 17: Programa "RealTerm"

2. En la pestaña Display, active la casilla de verificación Half Duplex.

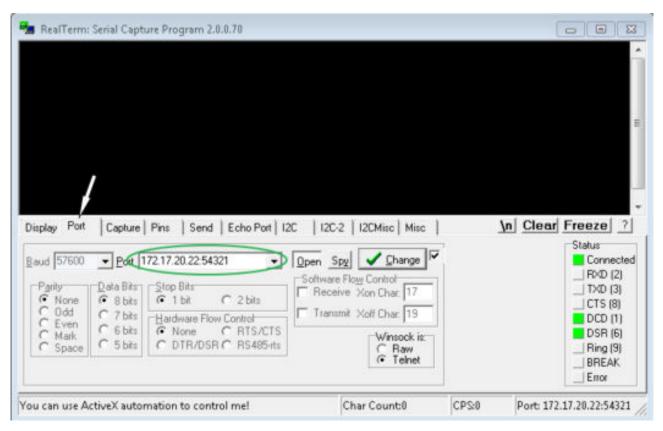


Fig. 18: Entrada en el campo Port

- 3. En la pestaña *Port*, escriba la dirección IP configurada y el número de puerto de la interfaz Ethernet del equipo de termorregulación. La dirección IP y el número de puerto se deben separar con dos puntos.
 - En vez de la dirección IP puede escribir el número de serie del equipo de termorregulación.
- 4. A continuación pulse el botón [Open].
- 5. Abra la pestaña Send.
 - Hasta aquí ha llegado la configuración del programa; ahora empieza la comprobación en sí.
- 6. Marque las casillas de verificación +CR y +LF.

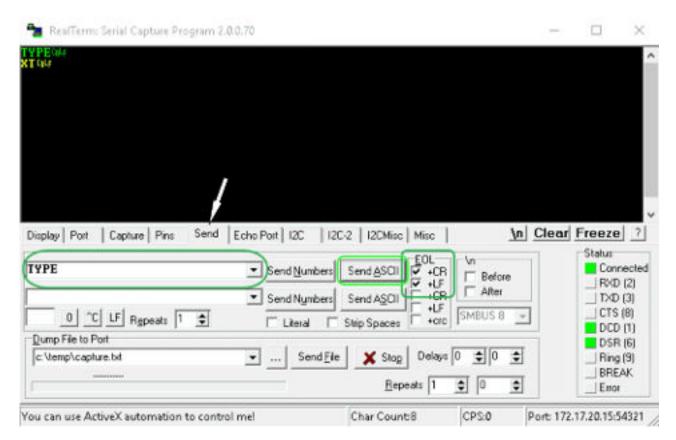


Fig. 19: Entradas para la comprobación

- 7. Para comprobar la comunicación es preciso enviar un comando al equipo de termorregulación. Por ejemplo, TYPE. Escriba el comando y pulse [Send ASCII].
 - Si la conexión funciona, el equipo de termorregulación confirma la recepción del comando.

4.4.3 Velocidad de transmisión de los datos

La velocidad de transmisión de los datos no se puede definir con exactitud. Esta depende de varios factores:

- El equipo de termorregulación (con la interfaz Ethernet) y el puesto de mando/PC se encuentran en la misma red?
- Se dispone de una conexión por radio (WiFi) o por cable entre el puesto de mando/PC y el equipo de termorregulación?
- ¡Qué grado de carga presenta la red?

Por lo general, se pueden enviar comandos al equipo de termorregulación cada 500 ms. En las conexiones WiFi, la retícula puede ser de más de 1 s. Solo se puede enviar un comando nuevo una vez que el equipo de termorregulación haya confirmado la recepción del comando anterior.

4.4.4 Protocolo de la interfaz

Observe las siguientes indicaciones:

- El comando del ordenador debe cerrarse con un CR, CRLF o LFCR.
- La respuesta del aparato de regulación de la temperatura termina siempre con un CRLF.
- Después de enviar un comando al termostato, debe esperarse la respuesta antes de enviar el siguiente comando. De este modo se consigue una asignación inequívoca de preguntas y respuestas.
 - CR = Retorno de carro (hexadecimal: 0D); LF = Alimentación de línea (hexadecimal: 0A)

Tab. 6: Ejemplo de la transferencia de valor nominal de 30,5 $^{\circ}\text{C}$ al aparato de regulación de la temperatura

Ordenador	Aparato de regulación de la tem- peratura			
"OUT_SP_00_30.5"CRLF	→			
("OK"CRLF			

4.5 Comandos de escritura y lectura de las interfaces

4.5.1 Comandos de escritura de la interfaz

Válidos para la interfaz Ethernet y para el módulo de interfaz RS 232/485 Un comando de escritura es un comando enviado desde el puesto de mando al equipo de termorregulación.

Tab. 7: Temperatura

ID	Función	Unidad	Comando
1	Valor nominal de temperatura	[°C]	OUT_SP_00_XXX.XX
15	Valor real temperatura externa (a través de la interfaz)	[°C]	OUT_PV_05_XXX.XX
26	Limitación de la temperatura de avance TiH (límite superior)	[°C]	OUT_SP_04_XXX
28	Limitación de la temperatura de avance TiL (límite inferior)	[°C]	OUT_SP_05_XXX
32	Valor nominal de temperatura T _{set} en el modo de seguridad	[°C]	OUT_SP_07_XXX.XX

Tab. 8: Bomba

ID	Función	Unidad	Comando
17	Nivel de potencia de la bomba (específico de cada equipo, p. ej., 1 - 6 o 1 - 8)	[-]	OUT_SP_01_[valor]

Tab. 9: Frío

10	Función	Unidad	Comando
2	Modo de funcionamiento de refrigeración: 0 = desc / 1 = con / 2 = automático	[-]	OUT_SP_02_[valor]

Tab. 10: Seguridad

ID	Función	Unidad	Comando
34	Tiempo de espera de comunicación a través de interfaz (1 – 99 segundos; 0 = Off)	[s]	OUT_SP_08_[valor]
72	Activación del modo de seguridad = 1 En el modo de seguridad se establecen los estados de funciona- miento seguros del equipo en caso de que se produzca un fallo. El usuario debe introducir estos estados de funcionamiento de ante- mano.	[-]	OUT_MODE_06_1

Tab. 11: Parámetros de regulación

ID	Función	Unidad	Comando
38	Parámetro de regulación Xp	[-]	OUT_PAR_00_XX.X
40	Parámetro de regulación Tn (5 - 180 s; 181 = Off)	[s]	OUT_PAR_01_XXX
42	Parámetro de regulación Tv	[s]	OUT_PAR_02_XXX
44	Parámetro de regulación Td	[s]	OUT_PAR_03_XX.X
46	Parámetro de regulación KpE	[-]	OUT_PAR_04_XX.XX
48	Parámetro de regulación TnE (0 - 9000 s; 9001 = Off)	[s]	OUT_PAR_05_XXXX
50	Parámetro de regulación TvE (5 = Off)	[s]	OUT_PAR_06_XXXX
52	Parámetro de regulación TdE	[s]	OUT_PAR_07_XXXX.X
54	Limitación de corrección	[K]	OUT_PAR_09_XXX.X
56	Parámetro de regulación XpF	[-]	OUT_PAR_10_XX.X
60	Parámetro de regulación Prop_E	[K]	OUT_PAR_15_XXX

Tab. 12: Regulación

ID	Función	Unidad	Comando
58	Desvia. valor req.	[K]	OUT_PAR_14_XXX.X
66	Regulación a la magnitud controlada X: 0 = interna/1 = Pt externo/2 = analógica externa/3 = serie externa/5 = externa Ethernet/6 = externa EtherCAT/7 = segundo Pt externo (solo en Integral)	[-]	OUT_MODE_01_X

I	Función	Unidad	Comando
68	Fuente de desviación X para valor nominal: 0 = normal/1 = Pt externo/2 = analógica externa/3 = serie externa/5 = externa Ethernet/6 = externa EtherCAT/7 = segundo Pt externo	[-]	OUT_MODE_04_X

Observación (ID 66 y 68): con el valor X = 3, los comandos ID 66 e ID 68 solo pueden ejecutarse en algunos equipos de termorregulación si se ha recibido previamente una especificación de temperatura externa (mediante el comando ID 15). Tenga en cuenta también que la interfaz seleccionada debe transferir de forma cíclica el comando OUT_PV_05_XXX.XX.

Tab. 13: Derechos

ID	Función	Unidad	Comando
62	Teclado del Master (corresponde a «KEY»): 0 = habilitar/1 = bloquear	[-]	OUT_MODE_00_X
64	Teclado de la unidad de mando a distancia (Command): 0 = habi- litar/1 = bloquear	[-]	OUT_MODE_03_X

Tab. 14: Estado

ID	Función	Unidad	Comando
74	Conexión/desconexión del equipo (standby)	[-]	START/STOP

Tab. 15: Programador

ID	Función	Unidad	Comando
76	Seleccione el programa para el que deben aplicarse los siguientes comandos. ($X=1-5$). Al conectar el equipo de termorregulación, se selecciona por defecto el programa 5.	[-]	RMP_SELECT_X
78	Iniciar el programador	[-]	RMP_START
79	Pausar el programador	[-]	RMP_PAUSE
80	Reanudar el programador (tras una pausa)	[-]	RMP_CONT
81	Finalizar el programador	[-]	RMP_STOP

Observe las siguientes indicaciones:

- En lugar de "_", también se permiten " " (espacios).
- Respuesta del termostato "OK", o en caso de fallo "ERR_X". Interfaz RS 485, p. ej., "A015_OK", o en caso de fallo "A015_ERR_X".
- El comando procedente del puesto de mando debe terminar con un CR, CRLF o LFCR.
- La respuesta del equipo de termorregulación termina siempre con un CRLF.
- Después de enviar un comando al equipo de termorregulación, se debe esperar hasta recibir la respuesta antes de enviar el comando siguiente.
 De este modo se consigue una asignación inequívoca de preguntas y respuestas.

CR = Retorno de carro (hexadecimal: OD); LF = Alimentación de línea (hexadecimal: OA)

Formato de datos permitidos

-XXXX.XX	-XXXX.X	-XXXX.	-XXXX	XXXX.XX	XXXX.X	XXXX.	XXXX
-XXX.XX	-XXX.X	-XXX.	-XXX	XXX.XX	XXX.X	XXX.	XXX
-XX.XX	-XX.X	-XX.	-XX	XX.XX	XX.X	XX.	XX
-X.XX	-X.X	-X.	-X	X.XX	X.X	X.	Χ
XX	X	.XX	.X				

4.5.2 Comandos de lectura de la interfaz

Válidos para la interfaz Ethernet y para el módulo de interfaz RS 232/485 Un comando de lectura consiste en una consulta de datos actuales enviada desde el puesto de mando al equipo de termorregulación.

Tab. 16: Temperatura

ID	Función	Unidad, reso- lución	Comando
2	Valor nominal de temperatura	[°C]	IN_SP_00
3	Temperatura del baño (temperatura de avance)	[°C], 0,01°C	IN_PV_00
4	Temperatura del baño (temperatura de avance)	[°C], 0,001°C	IN_PV_10
5	Temperatura regulada (interna/externa, Pt/externo, analógica/serie externa)	[°C]	IN_PV_01
7	Temperatura externa T_E (Pt)	[°C]	IN_PV_03
8	Temperatura externa T_E (entrada analógica)	[°C]	IN_PV_04
14	Temperatura externa T_E (Pt)	[°C], 0,001°C	IN_PV_13
25	Punto de desconexión exceso de temperatura T_Max	[°C]	IN_SP_03
27	Limitación de la temperatura de avance TiH (límite superior)	[°C]	IN_SP_04
29	Limitación de la temperatura de avance TiL (límite inferior)	[°C]	IN_SP_05
33	Valor nominal de temperatura T_{set} en el modo de seguridad (valor nominal de seguridad en la interrupción de la comunicación).	[°C]	IN_SP_07

Tab. 17: Bomba

ID	Función	Unidad	Comando
12	Caudal El regulador de paso continuo debe estar conectado	[l/min]	IN_PV_07
18	Nivel de potencia de la bomba	[-]	IN_SP_01

Tab. 18: Nivel de llenado

ID	Función	Unidad	Comando
9	Nivel del baño (nivel de llenado)	[-]	IN_PV_05

Tab. 19: Magnitud de ajuste

ID	Función	Unidad	Comando
11	Magnitud de ajuste del regulador en resolución por mil [0,1 %] - Valor negativo→ el equipo se enfría - Valor positivo→ el equipo se calienta	[‰]	IN_PV_06

Tab. 20: Frío

ID	Función	Unidad	Comando
24	Modo de funcionamiento de refrigeración: $0 = desc / 1 = con / 2 = automático$	[-]	IN_SP_02

Tab. 21: Seguridad

ID	Función	Unidad	Comando
35	Tiempo de espera de comunicación a través de interfaz (1 – 99 segundos; 0 = Off)	[s]	IN_SP_08
73	Estado del modo de seguridad: 0 = desc (inactivo)/1 = con (activo)	[-]	IN_MODE_06

Tab. 22: Parámetros de regulación

ID	Función	Unidad	Comando
39	Parámetro de regulación Xp	[-]	IN_PAR_00
41	Parámetro de regulación Tn (181 = Off)	[s]	IN_PAR_01
43	Parámetro de regulación Tv	[s]	IN_PAR_02
45	Parámetro de regulación Td	[s]	IN_PAR_03
47	Parámetro de regulación KpE	[-]	IN_PAR_04
49	Parámetro de regulación TnE	[s]	IN_PAR_05
51	Parámetro de regulación TvE	[s]	IN_PAR_06
53	Parámetro de regulación TdE	[s]	IN_PAR_07

ID	Función	Unidad	Comando
55	Limitación de corrección	[K]	IN_PAR_09
57	Parámetro de regulación XpF	[-]	IN_PAR_10
61	Parámetro de regulación Prop_E	[K]	IN_PAR_15

Tab. 23: Regulación

ID	Función	Unidad	Comando
59	Desvia. valor req.	[K]	IN_PAR_14
67	Regulación a la magnitud controlada X: 0 = interna/1 = Pt externo/2 = analógica externa/3 = serie externa/5 = externa Ethernet/6 = externa EtherCAT/7 = segundo Pt externo (solo en Integral)	[-]	IN_MODE_01
69	Fuente de desviación X para valor nominal: 0 = normal/1 = Pt externo/2 = analógica externa/3 = serie externa/5 = externa Ethernet/6 = externa EtherCAT/7 = segundo Pt externo (solo en Integral)	[-]	IN_MODE_04

Tab. 24: Derechos

ID	Función	Unidad	Comando
63	Estado del teclado de la unidad de mando a distancia Base: 0 = libre / 1 = bloqueado	[-]	IN_MODE_00
65	Estado del teclado de la unidad de mando a distancia: 0 = libre / 1 = bloqueado	[-]	IN_MODE_03

Tab. 25: Estado

100. 20	ab. 2J. Estado				
ID	Función	Unidad	Comando		
75	Estado standby: 0 = el equipo está conectado/1 = el equipo está desconectado	[-]	IN_MODE_02		
107	Tipo de equipo (ejemplo de respuesta: «PRO»)	[-]	TYPE		
130	Estado del equipo: 0 = OK/-1 = fallo	[-]	STATUS		
131	Diagnóstico de fallos; se emite una respuesta de 7 dígitos en el formato XXXXXXX, donde cada dígito X contiene información sobre el fallo (O = sin fallo/1 = fallo). La siguiente información se ha definido para los siete dígitos del formato de respuesta:	[-]	STAT		
	 1er carácter = error 2º carácter = alarma 3er carácter = advertencia 4º carácter = exceso de temperatura 5º carácter = nivel bajo 6º carácter = nivel excesivo (en caso de ajuste de alarma) 7º carácter = falta el valor externo de regulación 				

Tab. 26: Programador

ID	Función	Unidad	Comando
77	Programa al que hacen referencia los demás comandos	[-]	RMP_IN_04
88	Número de segmento actual	[-]	RMP_IN_01
90	Número establecido de repeticiones del programa	[-]	RMP_IN_02
92	Repetición actual del programa	[-]	RMP_IN_03
94	Programa actual en ejecución (0 = ningún programa en ejecución)	[-]	RMP_IN_05

Tab. 27: Contacto entrada/salida

ID	Función	Unidad	Comando
96	Entrada de contacto 1: 0 = Abierta / 1 = Cerrada Debe haber un módulo de contacto	[-]	IN_DI_01
98	Entrada de contacto 2: 0 = Abierta / 1 = Cerrada	[-]	IN_DI_02
100	Entrada de contacto 3: 0 = Abierta / 1 = Cerrada	[-]	IN_DI_03
102	Salida de contacto 1: 0 = Abierta / 1 = Cerrada Debe haber un módulo de contacto	[-]	IN_DO_01
104	Salida de contacto 2: 0 = Abierta / 1 = Cerrada	[-]	IN_DO_02
106	Salida de contacto 3: 0 = Abierta / 1 = Cerrada	[-]	IN_DO_03

Tab. 28: Versión SW

ID	Función	Unidad	Comando
108	Sistema de regulación	[-]	VERSION_R
109	Sistema de protección	[-]	VERSION_S
110	Unidad de mando a distancia (Command) (la unidad de mando a distancia debe estar presente)	[-]	VERSION_B
111	Sistema de refrigeración (solo para equipos con refrigeración activa)	[-]	VERSION_T
112	Módulo de interfaz analógico (el módulo de interfaz debe estar presente)	[-]	VERSION_A
114	Módulo de interfaz RS 232/485 o Profibus/Profinet (el módulo de interfaz debe estar presente)	[-]	VERSION_V
116	Módulo de interfaz EtherCAT (el módulo de interfaz debe estar presente)	[-]	VERSION_Z
117	Módulo de interfaz contacto (el módulo de interfaz debe estar presente)	[-]	VERSION_D
118	Válvula magnética agua de refrigeración (la válvula magnética debe estar presente)	[-]	VERSION_M_0
119	Válvula magnética sistema automático de relleno (la válvula magnética debe estar presente)	[-]	VERSION_M_1

ID	Función	Unidad	Comando
120	Válvula magnética estabilizador de nivel (la válvula magnética debe estar presente)	[-]	VERSION_M_2
121	Válvula magnética, válvula de cierre 1 (la válvula magnética debe estar presente)	[-]	VERSION_M_3
122	Válvula magnética, válvula de cierre 2 (la válvula magnética debe estar presente)	[-]	VERSION_M_4
128	Interfaz Pt100 externa 0 (el módulo debe estar presente)	[-]	VERSION_E

Observe las siguientes indicaciones:

- En lugar de «_», también se permiten « » (espacios).
- Si no se indica otra cosa en los comandos, la respuesta se realiza siempre con el formato de coma fija "XXX.XX" o "-XXX.XX" para valores negativos, o "ERR_X". (Interfaz RS485, p. ej., «A015_XXX.XX» o «A015_ERR_X»).
- El comando procedente del puesto de mando debe terminar con un CR, CRLF o LFCR.
- La respuesta del equipo de termorregulación termina siempre con un CRLF.
- Después de enviar un comando al equipo de termorregulación, se debe esperar hasta recibir la respuesta antes de enviar el comando siguiente.
 De este modo se consigue una asignación inequívoca de preguntas y respuestas.

CR = Retorno de carro (hexadecimal: 0D); LF = Alimentación de línea (hexadecimal: 0A)

4.5.3 Mensajes de error del equipo de termorregulación al puesto de mando

En esta lista se explican los distintos mensajes de error.

Error	Descripción
ERR_2	Entrada incorrecta (p. ej., desbordamiento del búfer).
ERR_3	Comando erróneo
ERR_5	Fallo de sintaxis en el valor
ERR_6	Valor no autorizado
ERR_8	Módulo o valor no disponible.
ERR_30	Todos los segmentos del programador están ocupados.
ERR_31	No se puede especificar ningún valor nominal; la entrada de valor nominal analógico está en estado CON.
ERR_33	Falta un sensor de temperatura externo.
ERR_34	Valor analógico no disponible.
ERR_35	El modo de seguridad no puede iniciarse porque no se ha activado la función del modo de seguridad.

Error	Descripción
ERR_36	No se puede especificar ningún valor nominal; el programador está en marcha o se encuentra en una pausa.
ERR_37	No se puede iniciar el programador; la entrada de valor nominal analógico está conectada.
ERR_38	No se puede activar el modo de seguridad.

4.6 Montaje del termostato de circulación

¡ATENCIÓN!

Salida de líquido caloportador a través de las conexiones de bombeo sin cerrar

Resbalón, pérdida de líquido caloportador

Cuando no haya ningún consumidor externo conectado, coloque tapones o una manguera de cortocircuito en las conexiones de bombeo.

4.7 Bastidores, plataformas ajustables, plataformas de elevación

Esta sección afecta a:

la categoría de equipos «termostato de baño»

Para regular la temperatura de, p. ej., muestras químicas, estas se colocan en ciertos bastidores, plataformas ajustables y plataformas de elevación.

¡AVISO! Corrosión de la cubeta de baño por la diferencia de potencial electroquímico entre el baño y el bastidor metálico que se introduce en este.

Daños en el equipo

En caso de contacto directo entre la caldera de acero inoxidable y un soporte, se puede producir una oxidación electroquímica. Evite el uso de este tipo de bastidores, así como el contacto directo con la caldera. Utilice los bastidores de acero inoxidable de LAUDA, o bien bastidores convencionales fabricados en plástico resistente a la temperatura.

4.8 Consumidor externo

4.8.1 Mangueras

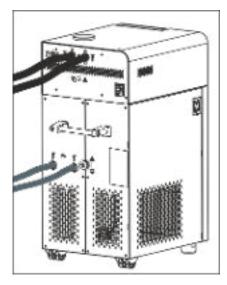


Fig. 20: Mangueras conectadas

¡ATENCIÓN! Explosión del circuito hidráulico externo

Escaldadura, congelación

Utilice mangueras cuya resistencia a la presión sea superior al valor máximo que puede alcanzar la presión de bombeo.

¡ATENCIÓN! Salida de líquido caloportador

Escaldadura, congelación

Para el rebosadero del equipo utilice mangueras cuya resistencia a la temperatura y a las distintas sustancias se corresponda con la aplicación.

¡ATENCIÓN! Salida del líquido caloportador debido al uso de las mangueras inapropiadas

Escaldadura, congelación

Utilice mangueras cuya resistencia a la temperatura y a las distintas sustancias se corresponda con la aplicación.

¡ATENCIÓN! Contacto con mangueras calientes o frías

Quemadura, congelación

Utilice mangueras aisladas si las temperaturas son inferiores a 0 °C o superiores a 70 °C.

Asimismo, tenga en cuenta lo siguiente:

El tendido de las mangueras de la refrigeración por agua y del líquido caloportador se debe efectuar de tal forma que no puedan quedar acodadas ni aplastadas.

Mangueras de elastómero autorizadas

Tipo de manguera	Anchura interior Ø en mm	Diámetro exterior en mm	Rango de temperatura de la man- guera en °C	Ámbito de uso	Número de pedido
Manguera EPDM no aislada	9	13	10 – 90	Para todos los líquidos calopor- tadores de LAUDA excepto los aceites minerales	RKJ 111
Manguera EPDM no aislada	12	16	10 - 90	Para todos los líquidos calopor- tadores de LAUDA excepto los aceites minerales	RKJ 112
Manguera EPDM ais- lada	12	35	-35 – 90	Para todos los líquidos calopor- tadores de LAUDA excepto los aceites minerales	LZS 021
Manguera de silicona no aislada	11	15	10 – 100	Agua, mezcla de glicol y agua	RKJ 059
Manguera de silicona aislada	11	33	-60 a 100	Agua, mezcla de glicol y agua	LZS 007

Los líquidos caloportadores autorizados para el equipo se pueden consultar en 🖔 Capítulo 5.1 «Líquidos caloportadores LAUDA» en la página 59.

Mangueras metálicas autorizadas

Todas las mangueras metálicas autorizadas que se recogen a continuación son de acero inoxidable y cuentan con tuercas de racor M16 x 1. Su luz es de 10 mm.

Tipo de manguera	Longitud en cm	Rango de temperatura de la manguera en °C	Ámbito de uso	Número de pedido
MC 50	50	10 - 400	Con aislamiento simple, para todos los líquidos caloportadores de LAUDA	LZM 040
MC 100	100	10 - 400	Con aislamiento simple, para todos los líquidos caloportadores de LAUDA	LZM 041
MC 150	150	10 - 400	Con aislamiento simple, para todos los líquidos caloportadores de LAUDA	LZM 042
MC 200	200	10 - 400	Con aislamiento simple, para todos los líquidos caloportadores de LAUDA	LZM 043
Cortocircuito de bombeo	18	10 - 400	Con aislamiento simple, para todos los líquidos caloportadores de LAUDA	LZM 044
MK 50	50	-90 a 150	Con aislamiento de espuma para zona fría, para todos los líquidos caloportadores de LAUDA	LZM 052

Tipo de manguera	Longitud en cm	Rango de temperatura de la manguera en °C	Ámbito de uso	Número de pedido
MK 100	100	-90 a 150	Con aislamiento de espuma para zona fría, para todos los líquidos caloportadores de LAUDA	LZM 053
MK 150	150	-90 a 150	Con aislamiento de espuma para zona fría, para todos los líquidos caloportadores de LAUDA	LZM 054
MK 200	200	-90 a 150	Con aislamiento de espuma para zona fría, para todos los líquidos caloportadores de LAUDA	LZM 055
Cortocircuito de bombeo	18	-90 a 150	Con aislamiento de espuma para zona fría, para todos los líquidos caloportadores de LAUDA	LZM 045

4.8.2 Conexión a aplicación externa

¡PELIGRO!

Rebosamiento de líquido caloportador a alta temperatura

Incendio

- En el rebosadero debe haber conectada una manguera dirigida a un recipiente colector.
- El recipiente colector y la manguera de conexión deben ser adecuados para soportar la temperatura máxima del líquido caloportador.
- Evite las fuentes de ignición en las inmediaciones del recipiente colector.

¡ADVERTENCIA!

Apalancamiento del rebosadero o del vaciado

Descarga eléctrica

 La manguera del rebosadero y la manguera de vaciado se deben conducir por separado con una pendiente constante hasta un recipiente colector.

¡ATENCIÓN!

Explosión del circuito hidráulico externo por sobrepresión

Escaldadura, congelación

- Coloque las mangueras de forma que no pandeen
- Utilice válvulas de seguridad en el circuito hidráulico.

¡ATENCIÓN! Salida del líquido caloportador durante el funcionamiento con aplicación abierta

Escaldadura, congelación

Utilice exclusivamente aplicaciones cerradas hidráulica-

¡ATENCIÓN!

Salida de líquido caloportador por aplicaciones situadas a mayor

Descarga eléctrica

Si la aplicación externa está posicionada por encima del equipo, cuando la bomba está detenida puede salir líquido caloportador del equipo. Por esta razón, utilice en el circuito hidráulico externo el seguro antirretorno que se puede adquirir como accesorio.

¡ATENCIÓN!

Salida de líquido caloportador por aplicaciones situadas a mayor o a menor altura

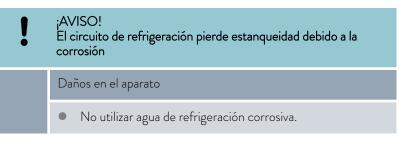
Descarga eléctrica

Si la aplicación externa está posicionada por encima o por debajo del equipo, cuando la bomba está detenida puede salir líquido caloportador del equipo o de la aplicación. Por esta razón, utilice en el circuito hidráulico externo el estabilizador de nivel que se puede adquirir como accesorio.

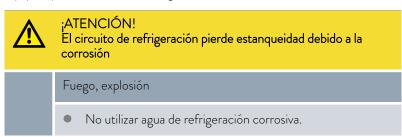
:ATENCIÓN!

Explosión de la aplicación externa

Escaldadura, congelación


Si la aplicación externa es sensible a la presión y está situada a una altura inferior, tenga también en cuenta la presión adicional resultante de la diferencia de altura entre la aplicación y el equipo.

Asimismo, tenga en cuenta lo siguiente:


- En el circuito externo, utilice siempre mangueras del mayor diámetro y de la menor longitud posible.
 - Si el diámetro de la manguera es demasiado pequeño, el insuficiente caudal de suministro da lugar a un gradiente de temperatura entre el equipo y la aplicación externa. En tal caso, aumente en consecuencia la temperatura del baño o el nivel de la bomba.
- Asegure las mangueras por medio de abrazaderas de manguera.

4.9 Agua de refrigeración

4.9.1 Requisitos respecto al agua de refrigeración

La instrucción de seguridad indicada a continuación es relevante para los equipos que funcionan con refrigerante natural:

Requisitos

Existen determinados requisitos respecto a la pureza del agua de refrigeración. En función de las impurezas del agua de refrigeración, se debe aplicar un procedimiento adecuado para el tratamiento y los cuidados del agua. Si se utiliza un agua de refrigeración inadecuada el condensador y el circuito completo del agua de refrigeración pueden obstruirse, deteriorarse o tener un escape. Se pueden generar daños derivados en todo el circuito de refrigeración y en el circuito de agua de refrigeración.

- El cloro libre, proveniente, por ejemplo, de desinfectantes, o el agua que contiene cloro da lugar a corrosión por picadura en el circuito del agua de refrigeración.
- El agua destilada, desionizada o completamente desalinizada tiene tendencia a reaccionar, por lo que no resulta apropiada y provocaría corrosión en el circuito de agua de refrigeración.
- El agua de mar tiene propiedades corrosivas, por lo que no resulta apropiada y provocaría la corrosión del circuito de agua de refrigeración.
- El agua ferruginosa, así como las partículas de hierro provocan corrosión en el circuito de agua de refrigeración.
- El agua dura contiene mucha cal, por lo que no resulta apropiada para la refrigeración y provocaría calcificaciones en el circuito de agua de refrigeración.
- El agua de refrigeración con sustancias en suspensión es inapropiada.
- El agua sin tratar ni depurar, p. ej., el agua de río o el agua de una torre de refrigeración, contiene microbios (bacterias) que podrían depositarse en el circuito de agua de refrigeración, por lo que resulta inapropiada.

Calidad de agua de refrigeración adecuada

Dato	Valor	Unidad
Valor pH	7,5 α 9,0	
Anión bicarbonato [HCO ₃ -]	70 α 300	mg/L
Cloruro	< 50	mg/L
Sulfato $[SO_4^{2-}]$	< 70	mg/L
Relación anión bicarbonato $[HCO_3^-]$ / sulfato $[SO_4^{-2-}]$	>1	
Dureza total del agua	4,0 α 8,5	°dH
Conductividad eléctrica	30 α 500	μS/cm
Sulfito (SO ₃ ²⁻)	<1	mg/L
Gas de cloro libre (Cl ₂)	< 0,5	mg/L
Nitrato (NO ₃ -)	<100	mg/L
Amoniaco (NH ₃)	no autorizado	
Hierro (Fe), disuelto	< 0,2	mg/L
Manganeso (Mn), disuelto	< 0,05	mg/L
Aluminio (Al), disuelto	< 0,2	mg/L
Ácido carbónico agresivo libre (CO_2)	no autorizado	
Sulfuro de hidrógeno (H ₂ S)	no autorizado	
Crecimiento de algas	no autorizado	
Sustancias en suspensión	no autorizado	

4.9.2 Conexión del agua de refrigeración

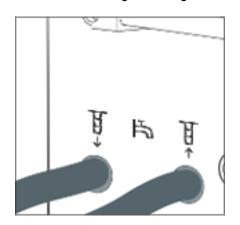
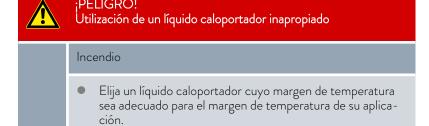


Fig. 21: Entrada y salida de agua de refrigeración

Esta sección es relevante para:

- equipos con máquina frigorífica
- equipos con serpentín de refrigeración
- Ă

Puede encontrar información más detallada sobre la presión y la temperatura del agua de refrigeración, así como sobre el diámetro de las mangueras de agua de refrigeración, en \$\text{\text{\$}}\$ Capítulo 11.2 «Potencia de frío y agua de refrigeración» en la página 124.


Tenga en cuenta:

- Conecte la entrada y la salida de agua de refrigeración de acuerdo con la identificación en el equipo. La entrada y la salida de la alimentación de agua de refrigeración no deben intercambiarse.
- Las mangueras empleadas para el circuito de agua de refrigeración deben ser apropiadas para el rango de temperatura mencionado. También se debe tener en cuenta el valor admisible para el diámetro de la manguera.
- Fije las boquillas para manguera o los conectores de acoplamiento a las mangueras mediante abrazaderas para manguera.
- Fije la manguera de retorno de la refrigeración por agua en el área de descarga para evitar un desvío incontrolado de la manguera, incluso en caso de impulsos de presión.
 - Fije la manguera de retorno de la refrigeración por agua en el área de descarga, de manera que no sean posibles las salpicaduras de agua de refrigeración caliente.
- Evite que las mangueras se doblen o queden aplastadas.
- Para evitar posibles daños debidos a una fuga en el sistema de agua de refrigeración, recomendamos utilizar un indicador de agua de fuga con desconexión de agua.
- Utilice únicamente agua de refrigeración que cumpla los requisitos de calidad
- En caso de fuga en el condensador, existe el peligro de que el aceite de la máquina frigorífica y el refrigerante (de tipo inflamable o no inflamable) del circuito de refrigeración del equipo puedan acceder al agua de refrigeración. Cumpla los requisitos legales y requerimientos de las empresas de suministro de agua en el lugar de utilización.

5 Puesta en servicio

5.1 Líquidos caloportadores LAUDA

Tenga en cuenta:

- La viscosidad aumenta en el límite inferior del rango de temperatura del líquido caloportador, por lo que cabe contar con un empeoramiento de las propiedades de regulación de la temperatura. Por ello, utilice plenamente esa zona del rango de temperatura solo cuando sea necesario.
- No use en ningún caso líquidos caloportadores que estén contaminados. El ensuciamiento de la cámara de bombeo puede bloquear la bomba y provocar por consiguiente la desconexión del equipo.
- Tenga en cuenta la hoja de datos de seguridad de los líquidos caloportadores. Puede solicitar las hojas de datos de seguridad cuando desee.

Tab. 29: Líquidos caloportadores autorizados

1 1 1 1 1	lab. 27. Elquidos culoportadores autorizados						
Denominación	Denominación quí- mica	Rango de tempe- ratura de trabajo en °C	Viscosidad (kin) en mm²/s (a 20°C)	Viscosidad (kin) en mm²/s a una tempe- ratura de	Punto de inflamación en °C		
Kryo 95	Aceite de silicona	-95 – 60	1,6	20 a -80 °C	64		
Kryo 60	Aceite de silicona	-60 – 60	3	25 a -60 °C	62		
Kryo 51	Aceite de silicona	-50 – 120	5	34 a -50 °C	120		
Kryo 30	Mezcla de monoeti- lenglicol y agua	-30 – 90	4	50 a -25 °C			
Kryo 20	Aceite de silicona	-20 – 170	11	28 a -20 °C	170		
Aqua 90	Agua descalcificada	5 – 90	1				
Ultra 301 [®]	Aceite mineral	40 - 230	76,5	35,4 a 40 °C	245		
Therm 250	Aceite de silicona	50 – 250	125	25 a 70 °C	300		
Therm 180	Aceite de silicona	0 – 180	23	36 a 0 °C	250		
Therm 160	Glicol de polialquileno y aditivos	60 – 160	141	28 a 60 °C	260		

[®]Recomendación: Superposición con nitrógeno a partir de 150 °C

Tab. 30: Números de pedido de los líquidos caloportadores

Denominación	Tamaño del recipiente			
Benominación		Número de pedido		
	5 L	10 L	20 L	
Kryo 95	LZB 130	LZB 230	LZB 330	
Kryo 60	LZB 102	LZB 202	LZB 302	
Kryo 51	LZB 121	LZB 221	LZB 321	
Kryo 30	LZB 109	LZB 209	LZB 309	
Kryo 20	LZB 116	LZB 216	LZB 316	
Aqua 90	LZB 120	LZB 220	LZB 320	
Ultra 301	LZB 153	LZB 253	LZB 353	
Therm 250	LZB 122	LZB 222	LZB 322	
Therm 180	LZB 114	LZB 214	LZB 314	
Therm 160	LZB 106	LZB 206	LZB 306	

■ Si se usa Kryo 30:

La proporción de agua disminuye durante funcionamientos largos a altas temperaturas y la mezcla se vuelve inflamable (punto de inflamación 119 °C). Compruebe la proporción de mezcla mediante el medidor de densidad.

Si se usa Aqua 90:

A temperaturas elevadas se producen pérdidas por evaporación. En tal caso, utilice una tapa para baño.

- Si las mangueras son de silicona, no utilice en ningún caso un aceite de silicona.
- Si se usan aceites minerales:
 No utilizar en combinación con una manguera de EPDM.

Líquido caloportador agua

- El contenido de iones alcalinotérreos en el agua debe estar entre 0,71 mmol/L y 1,42 mmol/L (lo que corresponde a 4,0 °dH y 8,0 °dH, respectivamente). El agua más dura da lugar a la formación de cal en el equipo.
- El valor de pH del agua debe estar entre 6,0 y 8,5.
- El agua destilada, desionizada o completamente desalinizada tiene tendencia a reaccionar, por lo que no resulta apropiada. Tanto el agua pura como los productos destilados resultan apropiados para el uso como líquido caloportador tras añadir 0,1 g de sosa (Na₂CO₃, carbonato de sodio) por cada litro de agua.
- El agua de mar es inapropiada por sus propiedades corrosivas.
- Cualquier contenido de cloro en el agua debe evitarse estrictamente. No añada cloro al agua. El cloro está presente, p. ej., en los productos de limpieza y de desinfección.
- El agua no debe contener ningún tipo de impurezas. El agua ferruginosa no es adecuada debido a la formación de óxido y el agua de río no tratada, debido a la formación de algas.
- No se permite añadir amoniaco.

5.2 Llenado del equipo

LAUDA declina toda responsabilidad por los daños que se puedan derivar del uso de un líquido caloportador inapropiado. Los líquidos caloportadores autorizados se pueden consultar en 🗞 Capítulo 5.1 «Líquidos caloportadores LAUDA» en la página 59.

. Rebosamiento de líquido caloportador a alta temperatura

Incendio

- En el rebosadero debe haber conectada una manguera dirigida a un recipiente colector.
- El recipiente colector y la manguera de conexión deben ser adecuados para soportar la temperatura máxima del líquido caloportador.
- Evite las fuentes de ignición en las inmediaciones del recipiente colector.

¡ADVERTENCIA! Salpicaduras de líquido caloportador

Lesiones en los ojos

Siempre que se efectúen trabajos en el equipo es preciso llevar puestas unas gafas de protección apropiadas.

¡ADVERTENCIA! Rebosamiento del líquido caloportador

Descarga eléctrica

No llene excesivamente el equipo. Tenga en cuenta el indicador de nivel así como la dilatación cúbica térmica del líquido caloportador.

¡ADVERTENCIA! Salpicaduras del líquido caloportador

Descarga eléctrica

Evite las salpicaduras del líquido caloportador.

¡ADVERTENCIA! Rebosamiento de líquido caloportador por la presencia de objetos introducidos en el baño

Escaldadura, congelación

Durante el llenado, tenga en cuenta el volumen de los objetos que debe introducir en el baño.

¡ADVERTENCIA!

Rebosamiento de líquido caloportador por aumento de volumen debido al calentamiento

Escaldadura, electrocución

 Tenga en cuenta el aumento de volumen debido al calentamiento del líquido caloportador.

¡ATENCIÓN! Salida de líquido caloportador

Resbalón

• El grifo de vaciado debe estar cerrado.

Los líquidos caloportadores se dilatan al calentarse (aprox. un 10 % cada 100 °C). Si hay conectada una aplicación externa, toda la dilatación tiene lugar en el baño del termostato.

Termostato de baño

Fig. 22: Llenado del termostato de baño

- 1. Cierre la válvula de vaciado. Para ello, gírela en el sentido de las agujas del reloj.
- 2. Vierta con cuidado el líquido caloportador en el baño.

La altura de llenado recomendada para el termostato de baño se encuentra entre 30 y 100 mm por debajo del borde superior del baño.

La reacción a nivel alto se activa cuando la altura de llenado se encuentra 25 mm por debajo del borde superior del baño. El cliente puede ajustar a voluntad la reacción a nivel alto. La advertencia de nivel bajo se activa a unos 110 mm por debajo del borde superior del baño, mientras que la alarma de nivel bajo lo hace a unos 120 mm.

Termostato de circulación

El equipo dispone de un modo de llenado que permite llevar a cabo el llenado con líquido caloportador de manera muy cómoda.

El modo de llenado le ayuda a llenar el equipo.

- Cierre la válvula de vaciado. Para ello, gírela en el sentido de las agujas del reloj.
- 2. Conecte una manguera apropiada (líquido caloportador/temperatura) en el racor del rebosadero.
- 3. Introduzca esta manguera en un bidón adecuado para recoger el líquido caloportador rebosado.

- **4.** Conecte el equipo.
 - Si el modo de llenado está activo, en la ventana básica parpadea el símbolo del recipiente de baño. El equipo no calienta o no enfría.
 - Si el equipo está vacío, nada más conectarlo se activa de inmediato el modo de llenado.

Si el equipo no está vacío, el modo de llenado se puede activar manualmente. Seleccione la opción de menú Ajustes → Modo de llenado → Iniciar.

- 5. Retire la tapa del depósito.
 - Hay un filtro introducido en la tubuladura de carga. ¡No retirar el filtro!
- 6. Vierta con cuidado el líquido caloportador.
 - El volumen es de aprox. 0,15 l por cada nivel. Se indica el nivel 1 a partir de un volumen de 2,4 l en el recipiente de baño.
 - Aproximadamente a partir del quinto nivel se emite una señal acústica con intervalos largos para advertir contra un posible llenado excesivo del equipo. Si se continúa con el llenado, el intervalo de la señal se reduce.

Si suena una señal continua, significa que el recipiente de baño está lleno. Continuar con el llenado del equipo provoca un rebosamiento.

- 7. Para llenar la aplicación externa conectada, si el nivel de llenado es suficiente (a partir del nivel 5), pulse la softkey [Standby] para poner en marcha la bomba.
 - Se bombea líquido caloportador hacia la aplicación externa. El nivel de líquido caloportador presente en el recipiente de baño disminuye.
- 8. Añadir líquido caloportador.
 - No obstante, si el nivel de llenado cae en exceso, el equipo pasa automáticamente al estado de alarma "Nivel bajo". La bomba se desconecta.
- Añadir una cantidad suficiente de líquido caloportador. Desactivar la alarma con la [tecla de desbloqueo]. La bomba se vuelve a poner en marcha automáticamente.
- 10. Repetir los pasos 8 y 9 hasta que el equipo y la aplicación conectada se hayan llenado.
- 11. Mediante [Finalizar llenado] concluye el modo de llenado y se desactivan las indicaciones acústicas.
- N.º de alarma

 1 Bomba nivel bajo

 Nivel bajo

 Pantalla OK Standby

Fig. 23: Alarma de nivel bajo

El [modo de llenado] se puede usar durante el funcionamiento para rellenar el equipo.

ñ

Si el [modo de llenado] está activo, el equipo no calienta o no enfría. No podrá poner en funcionamiento el equipo hasta haber finalizado el [modo de llenado].

¡PELIGRO! Salida de líquido caloportador a alta temperatura

Incendio

 Evacue el gas lenta y cuidadosamente. Evite la presencia de fuentes de ignición en las inmediaciones del racor de llenado y del rebosadero.

:PELIGRO!

Líquido caloportador caliente en el recipiente de expansión

Incendio

 Durante el funcionamiento, mantenga cerrada la tapa del recipiente de expansión.

5.3 Cambio/vaciado del líquido caloportador

;ADVERTENCIA!

Contacto con líquido caloportador caliente o frío

Quemadura, congelación

• Antes de vaciar, permita que el líquido caloportador alcance la temperatura ambiente.

¡ADVERTENCIA!

Salpicaduras de líquido caloportador

Lesiones en los ojos

 Siempre que se efectúen trabajos en el equipo es preciso llevar puestas unas gafas de protección apropiadas.

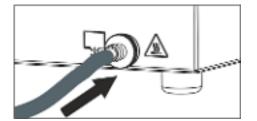


Fig. 24: Conexión de la manguera

- Tenga en cuenta las directrices para la eliminación de los líquidos caloportadores usados.
- 1. Deje que el equipo y el líquido caloportador se enfríen o se calienten a temperatura ambiente.
- 2. Apague el equipo y desenchufe el conector de alimentación eléctrica.
- 3. Conecte una manguera en el racor de vaciado.

- Si el volumen de llenado es grande, puede ser necesario efectuar varias operaciones de vaciado.
- 5. Abra la válvula de vaciado. Para ello, gírela en sentido contrario a las agujas del reloj.
 - Vacíe por completo el baño, la aplicación externa, los accesorios y las mangueras.
- 6. En caso necesario, limpie o lave el equipo (p. ej., con líquido caloportador nuevo).
 - En caso de cambio a otro líquido caloportador distinto, es preciso ajustar de nuevo con otros valores los límites de temperatura, el punto de desconexión por temperatura excesiva y el límite de salida del controlador.

Establecimiento del suministro de corriente 5.4

¡ADVERTENCIA!

Contacto con los conductores de tensión por defecto en el cable de alimentación

Descarga eléctrica

El cable de alimentación no debe entrar en contacto con la parte superior del equipo, con las mangueras por las que circula líquido caloportador caliente ni con las demás piezas que se encuentren a alta temperatura ni durante el funcionamiento ni tras la desconexión.

¡AVISO! Utilización de una tensión de red o frecuencia de red no adecuadas

Daños en el equipo

Compare la placa de características con la tensión de red y la frecuencia disponibles.

Tenga en cuenta lo siguiente:

- Indicación relativa a la instalación eléctrica del edificio:
 - La instalación de los aparatos debe estar protegida con un interruptor automático de máx. 16 A.
 Excepción: Aparatos con conector de 13 A del Reino Unido.
- Utilice exclusivamente el cable de alimentación que se proporciona para el conectar el suministro de corriente.
- Conecte el aparato exclusivamente en una toma de corriente que cuente con conductor protector (PE).

5.5 Puesta en marcha del equipo

ADVERTENCIA!

Contacto con piezas frías/calientes porque el usuario no se da cuenta de que el equipo está en funcionamiento.

Escaldadura, congelación

- La unidad de mando a distancia debe encontrarse en la zona de alcance visual desde el equipo.
- 1. Conecte el equipo con el conmutador de alimentación.
 - Se emite una señal acústica y el LED de indicación de funcionamiento y de fallo se enciende varias veces en color rojo.
 - A continuación, si no hay ninguna avería, el LED se ilumina de forma permanente en color verde.
- 2. En la pantalla se visualizan durante aprox. 5 segundos el número de versión del software instalado.

A continuación se abre la ventana básica.

3. El equipo ya se puede manejar por medio de la unidad de mando a distancia Base.

El número de versión del software instalado se puede consultar en todo momento a través del menú.

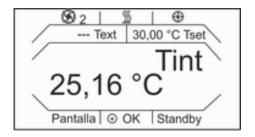


Fig. 25: Ventana básica

5.6 Teclas de pantalla

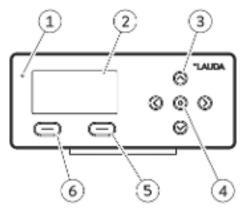


Fig. 26: Unidad de mando a distancia Base

Bloqueo de teclas

Activar

Desactivar

- 1 Sensor de luminosidad
- 2 Pantalla
- 3 Teclas del cursor, 4 uds.
- 4 Tecla de introducción de datos
- 5 Softkey derecha (standby)
- 6 Softkey izquierda (pantalla/ESC)

Las teclas de la pantalla sirven para controlar las funciones del equipo.

- Con las teclas del cursor arriba, abajo, derecha e izquierda se puede navegar por la pantalla.
- Con la tecla de introducción de datos se puede confirmar una selección en la pantalla o ejecutar una orden.
- Las softkeys sirven para ejecutar las funciones que se indican en la pantalla para estas teclas.

Las teclas de la unidad de mando a distancia Base pueden bloquearse para evitar cambios accidentales.

La unidad de mando a distancia Base muestra la pantalla básica.

- 1. Presione la [tecla de introducción de datos] y manténgala presionada.
- 2. Presione la tecla de cursor [abajo] y manténgala presionada.
 - ► El bloqueo de teclas se activará al cabo de 5 segundos.
 Solo conservará su función la softkey izquierda [Pantalla].
- 1. Presione la [tecla de introducción de datos] y manténgala presionada.
- 2. Presione la tecla de cursor [arriba] y manténgala presionada.
 - ▶ El bloqueo de teclas se desactivará al cabo de 5 segundos.

5.7 Estructura del menú de la unidad de mando a distancia Base

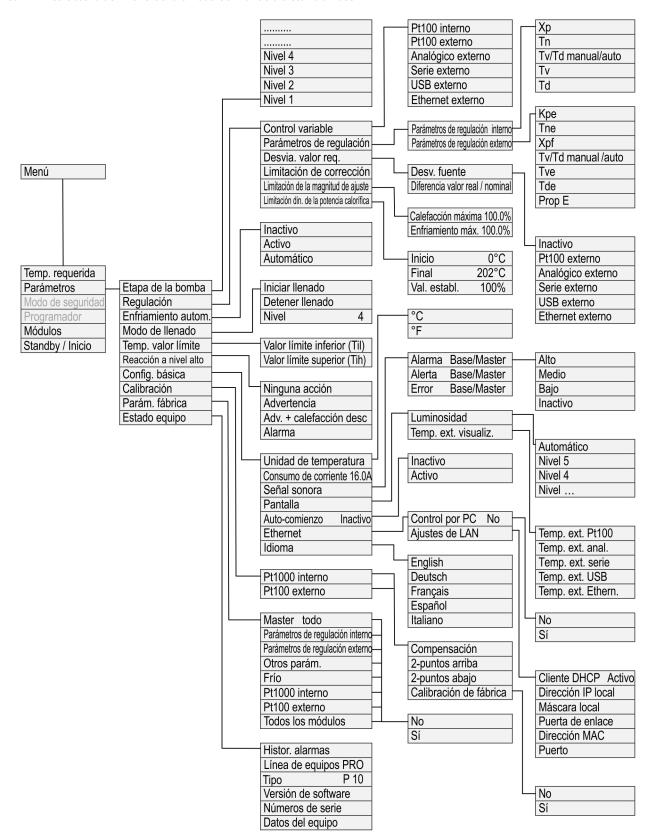


Fig. 27: Menú Base, parte 1

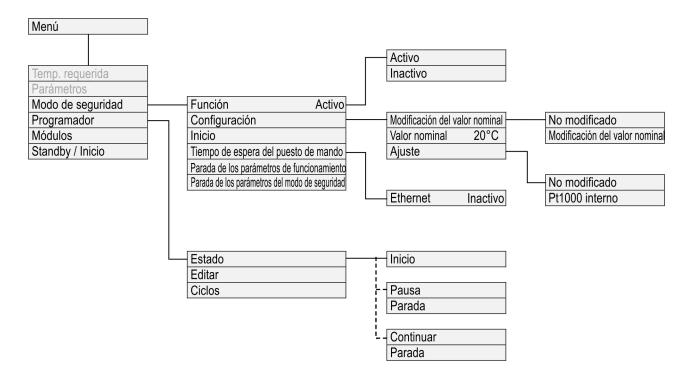
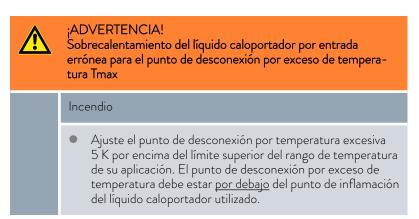



Fig. 28: Menú Base, parte 2

Las funciones que no se pueden ejecutar no se muestran en la estructura de menús.

5.8 Ajuste de la protección contra exceso de temperatura Tmax

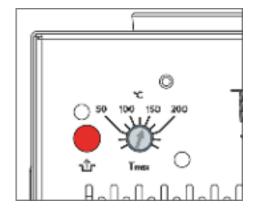


Fig. 29: Ajuste de Tmax

Para ajustar la temperatura máxima Tmáx de la protección contra temperatura excesiva, accionar el botón giratorio usando un destornillador. El valor exacto de la temperatura máxima ajustada se muestra adicionalmente de manera automática en la pantalla.

Se Capítulo 7.7 «Comprobación de la protección contra temperatura excesiva» en la página 106

Esta sección afecta a:

- manejo del equipo con la unidad de mando a distancia Base
- 1. Accione el botón giratorio usando un destornillador. Para reducir el valor Tmáx, gírelo en sentido contrario a las agujas del reloj.
 - En la pantalla se muestra la temperatura máxima Tmáx recién ajustada.

La temperatura máxima es aceptada de manera automática y la ventana en la que aparece Tmáx queda reemplazada al cabo de unos pocos segundos por la ventana básica.

5.9 Ajuste de los límites de temperatura Tih y Til

Esta función sirve para ajustar los límites de temperatura Tih y Til. Los límites de temperatura acotan el margen posible del valor de consigna de temperatura. Si la temperatura real interna se encuentra fuera de los límites de temperatura, se emite una advertencia. Los límites de temperatura deberían reflejar los límites de su aplicación. A los límites de temperatura superior e inferior se les debería sumar una tolerancia adicional de 2 K a fin de compensar las posibles sobreoscilaciones de la regulación, especialmente si esta es de tipo externo. Para definir los límites de temperatura también se debe tener en cuenta el margen de temperatura de funcionamiento del líquido caloportador.

Esta sección afecta a:

manejo del equipo con la unidad de mando a distancia Base

Ajuste de Tih y Til

- Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Use las teclas del cursor para elegir las opciones de menú Parámetros
 → Límites de temperat.
 - ▶ En la pantalla se muestran 2 opciones.

Fig. 30: Ajuste del límite de temperatura

- 4. Seleccione una de las siguientes opciones:
 - Para ajustar el valor límite inferior, seleccione la entrada [Temperat. mínima Til].
 - Para ajustar el valor límite superior, seleccione la entrada [Temperat. máxima Tih].
- 5. En la ventana de introducción de datos siguiente, use las teclas del cursor para adaptar el valor.
- 6. Presione la tecla de introducción de datos [OK].
 - Se acepta el valor y la ventana de introducción de datos desaparece
- 7. Utilice la tecla softkey [ESC] para pasar a la ventana básica.

5.10 Ajuste del valor de consigna de temperatura T_{set}

El valor de consigna de temperatura T_{set} es la temperatura que el equipo de regulación debe alcanzar y mantener constante.

Esta sección afecta a:

- manejo del equipo con la unidad de mando a distancia Base
- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Presione de nuevo la [tecla de introducción de datos] para seleccionar la primera opción de menú [Temp. de consigna].
 - En la pantalla se muestra una ventana de introducción de datos.
- **4.** Use las teclas del cursor para adaptar la nueva temperatura de consigna.
- 5. Confirme el valor nuevo con la tecla de introducción de datos [OK].
 - ▶ Se acepta el valor.
- 6. Utilice la tecla softkey [ESC] para pasar a la ventana básica.

Fig. 31: Introducción de la temperatura de consigna

5.11 Ajustes básicos

5.11.1 Modo de seguridad

Objetivos del modo de seguridad

El modo de seguridad ofrece al usuario de los equipos de termorregulación de LAUDA la posibilidad de definir por sí mismo y con antelación un estado de temperatura segura. Así se puede pasar de manera fácil y rápida a este estado seguro en caso de fallos de funcionamiento o errores, ya sea a iniciativa del usuario o, automáticamente, del aparato.

Si está **activado** el modo de seguridad, el equipo de termorregulación sigue funcionando y ajusta automáticamente el valor definido con anterioridad en el menú Modo de seguridad para la temperatura nominal T_{set} y la magnitud controlada.

En el submenú Modo de seguridad, el usuario define cómo debe reaccionar el aparato (acciones) si se producen ciertos eventos.

¿Qué eventos activan el modo de seguridad?

- Activación manual a través del equipo de termorregulación.
- Comando a través de la interfaz.
- Disparo por ciertas alarmas.
- Por interrupción de la conexión con el puesto de mando.

¿Cómo se visualiza que el modo de seguridad está activado?

- Si el aparato está en funcionamiento, se muestra en la pantalla el símbolo parpadeante del modo de seguridad . El rotor de la bomba y la cifra correspondiente a la etapa de la bomba se ocultan.
 Si el aparato está en standby, se oculta T_{ext} y en su lugar se visualiza adicionalmente el símbolo del modo de seguridad .
- ¿Qué ocurre si el modo de seguridad está activo pero no se activa **ninguna** alarma?
- En la pantalla de la unidad Base se muestra la ventana Modo de seguridad con la opción de cerrar Modo de seguridad.

¿Qué ocurre si el modo de seguridad está activo y se activa una alarma?

- En la pantalla de la unidad Base se muestra la ventana Alarma. Una vez desbloqueada la alarma en el aparato, se muestra la ventana Modo de seguridad con la opción de cerrar Modo de seguridad.
- Caso especial por exceso de temperatura

Activación del modo de seguridad mediante un comando de interfaz

El modo de seguridad se puede activar mediante un comando de interfaz. El aparato pasa a continuación a un estado seguro.

Tab. 31: Lista de interfaces y de los comandos de interfaz correspondientes

Interfaz	Comando de interfaz	ID	Descripción
Interfaz Ethernet	OUT_MODE_06_1	72	El comando de interfaz activa el modo de seguridad.
Interfaz RS 232/485	OUT_MODE_06_1	72	El comando de interfaz activa el modo de seguridad.

Activación del modo de seguridad mediante una alarma

El modo de seguridad también puede ser activado automáticamente por el equipo de termorregulación en caso de que se produzca una alarma.

ñ

En este caso, el modo de seguridad solo puede pasar a estar activo si la función del modo de seguridad ha sido conectada previamente a través del menú.

Tab. 32: Lista de las alarmas que pueden activar el modo de seguridad

Alarma	Descripción de la acción
Alarma 9 El valor real del Pt externo no está disponible	Se activa el modo de seguridad. Si se ha activado la aplicación de parámetros en el modo de seguridad, se aplica el valor nominal de temperatura de los parámetros del modo de seguridad. La regulación externa se conmuta de manera automática a regulación interna.
Alarma 10 El valor real analógico externo no está disponible	Se activa el modo de seguridad. Si se ha activado la aplicación de parámetros en el modo de seguridad, se aplica el valor nominal de temperatura de los parámetros del modo de seguridad. La regulación externa se conmuta de manera automática a regulación interna.
Alarma 11 El valor real serie externo no está disponible	Se activa el modo de seguridad. Si se ha activado la aplicación de parámetros en el modo de seguridad, se aplica el valor nominal de temperatura de los parámetros del modo de seguridad. La regulación externa se conmuta de manera automática a regulación interna.
Alarma 12 Interfaz de corriente 1, interrupción	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 13 Interfaz de corriente 2, interrupción	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 15 Fallo en la entrada digital	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 16 La operación de rellenado ha fallado	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 17 Situar la válvula en la posición de entrada	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 18 Situar la válvula en la posición de salida	Se activa el modo de seguridad. Se aplican los parámetros del modo de seguridad según la configuración.
Alarma 20 El valor real externo de Ethernet no está disponible	Se activa el modo de seguridad. Si se ha activado la aplicación de parámetros en el modo de seguridad, se aplica el valor nominal de temperatura de los parámetros del modo de seguridad. La regulación externa se conmuta de manera automática a regulación interna.

Activación del modo de seguridad por interrupción en la conexión con el puesto de mando La supervisión del puesto de mando por el equipo de termorregulación se puede conectar en el menú del aparato. El puesto de mando debe enviar cíclicamente un comando al equipo de termorregulación. El tiempo tras el cual se determina que se ha producido una interrupción debe ser ajustado por el usuario. Si el puesto de mando no envía ningún comando en el tiempo predefinido, la interfaz (Ethernet o RS 232) comunica que se ha producido una interrupción. A continuación, el equipo de termorregulación es puesto en el modo de seguridad y se genera una advertencia.

Conmutación del modo de seguridad a disponibilidad

- Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Elija la opción de menú Modo de seguridad.

Tab. 33: Ajustes en el menú Modo de seguridad

Opción de menú	Descripción
Función	Aquí puede ajustar si la función Modo de seguridad está disponible o si la función Modo de seguridad está desactivada.
	Seleccione una de las siguientes opciones:
	 Opción Con: La función Modo de seguridad está disponible. Opción Desc: La función Modo de seguridad está desactivada.
	Si la función Modo de seguridad está desactivada,
	la activación del modo de seguridad a través de la opción de menú Inicio no resulta posible.
	También está bloqueada la activación por medio de una alarma o de la interfaz.
	No se pueden ajustar los parámetros del modo de seguridad.
Configuración	En este submenú puede ajustar los parámetros con los que el aparato trabajará si el modo de seguridad está activo.
Inicio	Pone en marcha la función Modo de seguridad. La opción de menú <i>Inicio</i> solo se muestra si el modo de seguridad ha sido puesto en estado disponible en el submenú <i>Función</i> con la opción <i>Con</i> .
Tiempo de espera del puesto de mando	En este submenú se ajustan los tiempos de espera para las interfaces Ethernet y RS 232 por separado (tiempo de espera 1 a 60 segundos, 0 = Desc).

Tab. 34: Ajustes en el menú Configuración

Descripción en caso de que el modo de seguridad esté activo	Configuración de los parámetro del modo de seguridad
Valor nominal: En caso de activación del modo de seguridad, el aparato puede efectuar la regulación basándose en este valor de temperatura guardado.	Introduzca aquí el valor nominal $T_{\rm set}$.
Modificación del valor nominal: En caso de activación del modo de seguridad, el aparato lleva a cabo la regulación tomando como referencia la temperatura guardada en el menú Valor nominal.	 Seleccione una de las siguientes opciones: Opción No modificado: El aparato conserva el valor nominal anterior. Opción Cambiar el valor nominal: El aparato lleva a cabo la regulación basándose en este valor nominal guardado T_{set}.
Regulación: En caso de activación del modo de seguridad, el aparato efectúa la regulación tomando como referencia la magnitud controlada seleccionada previamente.	 Seleccione una de las siguientes opciones: Opción No modificado: El aparato conserva la magnitud controlada anterior. Opción Pt1000 interno: El aparato lleva a cabo la regulación basándose en la magnitud controlada del Pt1000 interno.

Desconexión del modo de seguridad activo

Si el modo de seguridad está activo, el usuario puede usar la unidad de mando a distancia para desactivar el modo de seguridad.

El modo de seguridad no se puede desconectar a través de la interfaz.

Si el modo de seguridad ha sido activado por un alarma, previamente se debe reiniciar la alarma en el equipo de termorregulación. Hasta después de esta operación no se puede desconectar el modo de seguridad.

Menú para desconectar el modo de seguridad	Descripción
Parámetros de funcionamiento	Se cierra el modo de seguridad. El aparato sigue funcionando con los parámetros (Tst, magnitud controlada) que estaban ajustados antes de que se activara el modo de seguridad.
Parámetros del modo de seguridad	Se cierra el modo de seguridad. El aparato sigue funcionando con los parámetros (Tset, magnitud controlada) que se han ajustado en la configuración del modo de seguridad.

5.11.2 Ajustar el volumen de las señales acústicas

El equipo no solo señala las alarmas, advertencias y errores de forma visual, sino también por medios acústicos.

Este menú permite ajustar las señales acústicas de: error, alarma y advertencia. Los volúmenes posibles son: inactivo, bajo, medio y alto.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- Seleccione la opción de menú Parámetros → Ajustes básicos → Señal acústica.
 - Aparece la lista de las señales acústicas.
- 4. Use las teclas del cursor para seleccionar la señal acústica que desee ajustar.
- 5. Confirme la operación con la tecla de introducción de datos [OK].
- 6. Use las teclas del cursor para elegir un volumen.
- 7. Confirme la operación con la tecla de introducción de datos [OK].
- 8. Utilice la tecla softkey [ESC] para pasar a la ventana básica.

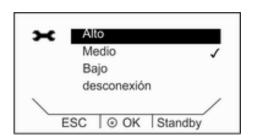
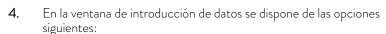



Fig. 32: Ajustar el volumen

5.11.3 Ajustar el brillo de la pantalla

La unidad de mando a distancia Base dispone de un sensor que adapta automáticamente el brillo de la pantalla a la luminosidad del ambiente. Si no se desea que este ajuste se lleve a cabo de manera automática, se puede elegir el ajuste manual del brillo de la pantalla.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- Seleccione el punto de menú Ajustes → Ajustes básicos → Pantalla → Brillo.

- El ajuste predeterminado *autom*. permite adaptar el brillo de manera automática.
- El brillo también se puede ajustar manualmente mediante las entradas *Nivel 1 a 5*.
 - El brillo se intensifica progresivamente a partir del *Nivel* 1. El brillo correspondiente se ajusta de inmediato en la pantalla.

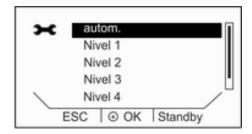


Fig. 33: Ajustar el brillo

5.11.4 Modo de funcionamiento tras una interrupción del suministro eléctrico (arranque automático)

En general, es deseable que el equipo reanude el funcionamiento tras una interrupción del suministro. No obstante, por motivos de seguridad se puede intercalar un paso de activación manual.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.

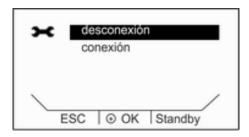


Fig. 34: Establecer el arranque automático

- 3. Seleccione el punto de menú Ajustes → Ajustes básicos → Arranque automático.
- 4. Seleccione una de las siguientes opciones:
 - Si se selecciona *inactivo*, tras una interrupción en el suministro eléctrico el equipo se reconecta en el modo de standby.
 - Si se elige la opción Con, tras una interrupción en el suministro eléctrico el aparato se reconecta en el modo de funcionamiento (Standby/funcionamiento) en el que se encontraba antes de la interrupción.
- 5. Confirme la operación con la [tecla de introducción de datos].

5.11.5 Limitar el consumo de corriente

Si su fusible de red es de menos de 16 A, el consumo de corriente se puede reducir gradualmente de 16 A a 8 A. La potencia máxima de calefacción se reduce en consecuencia. Tenga en cuenta si hay otros consumidores conectados al circuito de fusibles o si su equipo es el único.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Seleccione el punto de menú Ajustes → Ajustes básicos → Cons. corriente.

Fig. 35: Ajuste del consumo de corriente

Fig. 36: Determinar el consumo de corriente

- 4. Use las teclas del cursor para adaptar en consecuencia el consumo de corriente.
- 5. Confirme la operación con la [tecla de introducción de datos].

5.11.6 Seleccionar el idioma del menú

Fig. 37: Seleccionar el idioma del menú

Los termostatos PRO con la unidad de mando a distancia Base disponen de los siguientes idiomas de menú: alemán, inglés, francés, español e italiano.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Seleccione la opción de menú Parámetros → Ajustes básicos → Idioma.
- 4. Seleccione uno de los siguientes idiomas.
- 5. Confirme la operación con la [tecla de introducción de datos].

6 **Funcionamiento**

6.1 Instrucciones generales de seguridad

¡ADVERTENCIA! Contacto con piezas frías/calientes porque el usuario no se da cuenta de que el equipo está en funcionamiento.

Escaldadura, congelación

La unidad de mando a distancia debe encontrarse en la zona de alcance visual desde el equipo.

¡ADVERTENCIA! Peligros específicos de la aplicación por varios equipos unos junto a otros y unidad de mando a distancia errónea

Escaldadura, congelación, fuego

Asegúrese de usar la unidad de mando correcta.

¡ATENCIÓN!

Contacto con superficies calientes o frías

Quemadura, congelación

- Durante el estado de funcionamiento, no toque los racores de conexión ni los racores de vaciado.
- Por otra parte, si la temperatura de funcionamiento es elevada, algunas partes de la cubierta del baño pueden alcanzar temperaturas superiores a 70 °C.

La instrucción de seguridad indicada a continuación es relevante para los termostatos de baño:

;AVISO!

. Caída de la unidad de mando a distancia en el baño

Daños en el equipo

El soporte de la unidad de mando a distancia debe estar unido al equipo de forma fija.

Las instrucciones de seguridad indicadas a continuación son relevantes para los termostatos de circulación:

¡PELIGRO! Salida de líquido caloportador a alta temperatura

Incendio

Evacue el gas lenta y cuidadosamente. Evite la presencia de fuentes de ignición en las inmediaciones del racor de llenado y del rebosadero.

Líquido caloportador caliente en el recipiente de expansión

Incendio

Durante el funcionamiento, mantenga cerrada la tapa del recipiente de expansión.

¡ADVERTENCIA! Salida de líquido caloportador en ebullición a través del racor de llenado

Causticación, quemadura

Si el líquido caloportador está caliente, no se permite añadir a este líquido alguno.

Las instrucciones de seguridad indicadas a continuación son relevantes para los equipos que funcionan con refrigerante natural:

;ADVERTENCIA!

Explosión del circuito de refrigerante

Salida de refrigerante combustible, formación de una atmósfera explosiva

Explosión, quemadura, incendio

- Ventile la sala de inmediato y a fondo.
- Durante este tiempo, no accione ningún interruptor del equipo ni de ningún otro punto de la sala.
- No genere llamas ni chispas y no fume.

¡ADVERTENCIA!

Explosión del circuito de refrigeración por temperatura ambiente demasiado alta en reposo

Colisión, corte, daños en el equipo

Tenga en cuenta los valores admisibles para la temperatura de almacenamiento y la temperatura de funcionamiento.

\triangle

¡ATENCIÓN! Explosión del circuito de refrigerante

Daño a la salud por inhalación (se superan los límites de exposición profesional)

- Ventile la sala de inmediato y a fondo.
- Durante este tiempo, no accione ningún interruptor del equipo ni de ningún otro punto de la sala.
- No genere llamas ni chispas y no fume.

Asimismo, tenga en cuenta lo siguiente:

Solo está permitido mover el equipo en estado vacío. Para ello es preciso poner el equipo fuera de servicio.

6.2 Modos de funcionamiento

Hay disponibles dos modos de funcionamiento para los equipos.

- En el modo de funcionamiento, los componentes del equipo están en marcha.
- En el modo de standby, todos los componentes del equipo están desconectados. Únicamente la pantalla del equipo recibe alimentación eléctrica. Este modo de funcionamiento es adecuado, por ejemplo, para llevar a cabo ajustes generales.

Si se ha iniciado un programa, el modo de standby lo pausa. Tras activar el modo de funcionamiento, el programas se debe reanudar manualmente. Se Capítulo 6.4 «Activación y desactivación del modo de standby y del modo de funcionamiento» en la página 82

6.3 Ajuste de la etapa de la bomba

Las bombas de los termostatos de baño y de los termostatos de circulación se pueden regular en varios niveles de bombeo diferentes. Ello permite optimizar la circulación del baño, el caudal y la presión de elevación, la generación de ruido y la aportación de calor de origen mecánico. \$\square\$ Capítulo 3.3.1 «Circuito hidráulico» en la página 20

En un termostato de baño pequeño sin aplicación externa es razonable usar los niveles de bomba 1 a 3. En un termostato de circulación tiene sentido usar un nivel de potencia superior a fin de que la diferencia de temperatura entre el baño y la aplicación externa se mantenga lo más pequeña posible.

- 1. Para solicitar la visualización de la ventana básica, presione una tecla cualquiera de la unidad de mando a distancia Base.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.

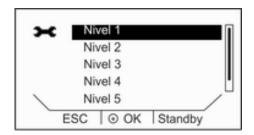


Fig. 38: Ajuste de la etapa de la bomba

- 3. Use las teclas del cursor para elegir las opciones de menú *Parámetros*→ *Nivel bomba*.
 - ▶ En la pantalla se muestran los niveles de la bomba.
- 4. Use las teclas del cursor para elegir el nivel de la bomba que desee.
 - La etapa de la bomba seleccionada pasa a estar activa directamente. No es necesario confirmarlo aparte.
- 5. Utilice la softkey [ESC] para pasar a la ventana básica.

6.4 Activación y desactivación del modo de standby y del modo de funcionamiento

En el modo de standby se desconectan los componentes del equipo, por ejemplo la bomba. La pantalla permanece activa. El modo de standby es muy apropiado para efectuar numerosos ajustes con la unidad de mando.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la softkey [Standby].
 - ▶ El equipo está ahora en el modo de standby. En la parte superior de la pantalla aparece el texto «Standby».
- 3. Presione la softkey [Standby].
 - ► El equipo reanuda su funcionamiento. Desaparece el texto «Standby» de la parte superior de la pantalla.

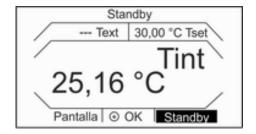


Fig. 39: Ventana básica en standby

6.5 Definición del límite de salida del controlador

La limitación de la magnitud de ajuste permite limitar la potencia calorífica máxima. El ajuste se indica en tanto por ciento respecto al valor máximo.

Si la limitación de la magnitud de ajuste de la potencia calorífica está activada, se evita que la superficie del elemento térmico alcance una temperatura excesiva. Una temperatura excesiva del elemento térmico puede dañar el líquido caloportador y el aparato.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Elija la opción de menú Parámetros → Ajuste → Cont. var. limit.
- 4. Elija la opción [Calefacción máx.] y confirme con [OK].
 - Se visualiza una ventana de introducción. El límite de salida del controlador se puede adaptar dentro de los valores límite mostrados.
- 5. Ajuste el valor como corresponda.

- 6. El botón [OK] permite retornar a la pantalla anterior con el ajuste nuevo.
 - ▶ El ajuste nuevo está activo.

Ajuste el límite de salida del controlador antes de adaptar los parámetros de regulación.

6.6 Control externo

6.6.1 Activación de la regulación externa y desactivación de la regulación interna

Si es preciso regular el aparato basándose en otra magnitud controlada diferente, debe ajustar una nueva magnitud controlada. En ese caso, la magnitud controlada antigua se desactiva automáticamente a continuación.

La interfaz 10S del aparato de regulación de la temperatura sirve para conectar un sensor de temperatura Pt100 destinado a registrar la temperatura en el consumidor externo. La indicación estándar para la temperatura externa medida $T_{\rm ext}$ es siempre la magnitud controlada externa ajustada. Si es preciso mostrar otra temperatura diferente en la unidad de mando a distancia, se debe ajustar esta de manera explícita.

Si la regulación externa está activada, el equipo de termorregulación no se basa en la temperatura del baño $T_{\rm int}$ (termostato de baño) ni en la temperatura de avance $T_{\rm int}$ (termostato de circulación), sino que efectúa la regulación teniendo en cuenta el valor de la temperatura externa $T_{\rm ext}$.

Activar el control externo

- 1. Conecte un sensor de temperatura Pt100 externo en la interfaz 10S del aparato de regulación de la temperatura.
- 2. Suspenda el sensor de temperatura Pt100 en el interior del líquido caloportador del consumidor externo y fíjelo con cuidado.
- 3. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 4. Presione la [tecla de introducción de datos] para acceder al menú.
- Use las teclas del cursor para elegir las opciones de menú Parámetros
 → Ajustes → Control variable.
 - ▶ En la pantalla se muestran las opciones disponibles.
- 6. Use las teclas del cursor para elegir la opción [Pt100 externa].
 - ▶ El nuevo ajuste se señala mediante una marca de verificación.
- 7. Utilice la softkey [ESC] para pasar a la ventana básica.

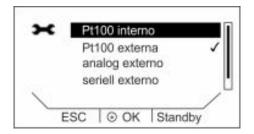


Fig. 40: Activar el control externo

Activación de la regulación interna

Para volver a activar la regulación interna, en el submenú [Control variable] se debe seleccionar la opción [interno].

6.6.2 Ajuste de la compensación del valor de consigna

Existe la posibilidad de corregir la temperatura medida por un sensor externo de temperatura con un valor de compensación y usar a continuación el resultado a modo de valor de consigna. Así, p. ej., el valor de consigna de la temperatura del baño se puede definir 15 K por debajo de la temperatura de un reactor medida por el sensor externo de temperatura.

Navegar hasta los ajustes

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Use las teclas del cursor y la tecla de introducción de datos para elegir las opciones de menú Parámetros → Ajustes → Desviación valor de consigna.
- 4. Seleccione una de las siguientes opciones:
 - Con [Fuente de desviación] se puede definir para qué fuente es preciso medir la desviación.
 - Con [Dif. valor nominal/real] se puede definir el valor para la desviación respecto al valor nominal.

Introducción del valor de compensación

- 1. En el menú Desviación valor de consigna, accione el botón [Dif. valor de consigna/real].
 - Se visualiza una ventana de introducción. El valor de compensación se puede ajustar dentro del margen comprendido entre los valores límite mostrados.
- 2. Introduzca la compensación del valor de consigna.
- 3. Confirme la operación con la [tecla de introducción de datos].
- 4. El software retorna al menú anterior Desviación valor de consigna.

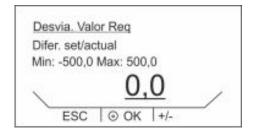


Fig. 41: Introducción del valor de compensación

Activación de la fuente de compensación

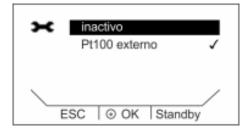


Fig. 42: Menú Desv. Fuente

Las opciones del menú [Desv. Fuente] permiten activar o desactivar para la fuente en cuestión el valor introducido a modo de compensación del valor de consigna. Con [Pt100 externa], p. ej., se puede activar la compensación de valor de consigna para el sensor externo de temperatura.

- 1. En el menú Desviación valor de consigna, accione el botón [Desv.Fuente.].
- 2. Seleccione una de las opciones siguientes:
 - Con [inactivo] se desactiva la fuente de compensación.
 Elija una fuente de compensación de entre las demás opciones:
 - [Pt100 externo]
 - [Analóg. externo]
 - [Serial externo]
 - [USB externo]
 - [Ethernet externo]
- 3. Confirme la operación con la [tecla de introducción de datos].
- 4. Utilice la softkey [ESC] para pasar a la ventana básica.

6.7 Programador

6.7.1 Nociones básicas

El programador le permite memorizar un programa de temperatura en función del tiempo. Un programa consiste en varios segmentos de temperatura en función del tiempo. En los segmentos se definen los datos relativos a las repeticiones del programa, la temperatura, la duración, la etapa de la bomba, la magnitud controlada y el comportamiento de las salidas de conmutación. Las distintas posibilidades que ofrece son rampas, saltos de temperatura y fases de mantenimiento de la temperatura.

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Use las teclas de cursor para seleccionar la opción de menú *Programador*.

Rampa

Una rampa se describe mediante su duración predefinida (desde el principio del segmento hasta el final de este) y por la temperatura objetivo, es decir, la temperatura al final del segmento.

- Salto de temperatura La temperatura final es alcanzada lo más rápidamente posible; no se especifica un tiempo de transición (el tiempo es 0).
- Fase de mantenimiento de la temperatura
 La temperatura no varía (es decir, la temperatura es la misma al principio y al final del segmento).
 - Puede utilizarse un máximo de 50 segmentos de libre programación por programa.

Ajustes posibles

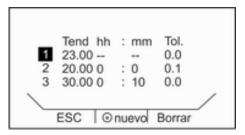


Fig. 43: Editar el programa

Ajuste	Descripción
	Número de segmentos del programa
Tend	Temperatura final que debe alcanzarse
hh	Tiempo en horas (hh) en el que se debe alcanzar la temperatura predefinida
mm	Tiempo en minutos (mm) en el que se debe alcanzar la temperatura predefinida
Tol.	Tolerancia que determina la exactitud con la que se debe alcanzar la temperatura final para pasar a procesar el segmento siguiente.
	0.00 significa que no se tiene en cuenta tolerancia alguna. Es decir, una vez transcurrido el tiempo predefinido, el programa pasa a la temperatura siguiente.
Pmp	Etapa de la bomba con el que se debe procesar el segmento.
S1, S2, S3	Los contactos de conmutación del módulo de contacto (en caso de estar disponible) se pueden programar aquí. Los módulos de contacto están disponibles como accesorios.

Edición de un programa de ejemplo

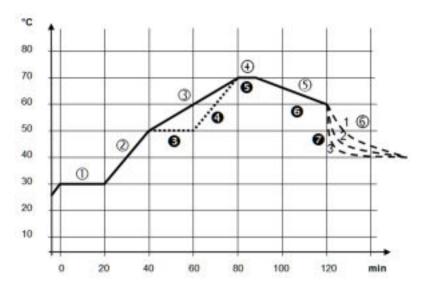


Fig. 44: Programa de ejemplo

El gráfico muestra a modo de ejemplo la reprogramación de un gráfico de temperatura nominal.

El tiempo de enfriamiento en el gráfico varía en función del tipo de equipo, aplicación, etc. En el segmento número 2 del ejemplo se deben alcanzar 50 °C en el transcurso de 20 minutos.

Los valores originales están recogidos a continuación en la tabla "antes" y se representan en el gráfico con una línea continua, mientras que los correspondientes a la curva editada figuran más adelante en la tabla "después" y se representan con una línea discontinua.

Segmento 1: Inicio

Todos los programas comienzan con el segmento 1. Este define a qué temperatura debe proseguir el programa en el segmento 2. La temperatura del segmento 1 se alcanza tan rápidamente como resulte posible. En el segmento 1 no se puede especificar ningún tiempo. En los termostatos sin refrigeración, se debe elegir una temperatura de inicio que sea mayor que la temperatura a la que se encuentre el baño antes de comenzar el programa. Sin el segmento 1, el segmento 2 variaría en función de la temperatura del baño al comenzar el programa.

Tab. 35: Programa de ejemplo, antes (—)

antes (—)								
	Tend	hh	mm	Tol.	Pmp	S1	S2	S3
1	30,00			0,1	2	Inactivo	Inactivo	Inactivo
2	50,00	0	20	0,0	2	Inactivo	Inactivo	Inactivo
3	70,00	0	40	0,0	3	Inactivo	Inactivo	Inactivo
4	70,00	0	10	0,1	4	Inactivo	Inactivo	Inactivo
5	60,00	0	30	0,0	2	Inactivo	Inactivo	Inactivo
6	30,00	0	0	0,0	2	Inactivo	Inactivo	Inactivo

En la tabla editada se ha introducido un segmento nuevo con el número 3. Además, también se han modificado el tiempo y la etapa de la bomba para el segmento con el número 4. En el segmento con el número 5 se han adaptado la tolerancia y la etapa de la bomba.

Tab. 36: Programa de ejemplo, después (línea discontinua - - - - , editado)

después (, editado)							
	Tend	hh	mm	Tol.	Pmp	S1	S2	S3
1	30,00			0,1	2	Inactivo	Inactivo	Inactivo
2	50,00	0	20	0,0	2	Inactivo	Inactivo	Inactivo
3	50,00	0	20	0,1	3	Inactivo	Inactivo	Inactivo
4	70,00	0	20	0,0	4	Inactivo	Inactivo	Inactivo
5	70,00	0	10	0,8	2	Inactivo	Inactivo	Inactivo
6	60,00	0	30	0,0	2	Inactivo	Inactivo	Inactivo
7	30,00	0	0	0,0	2	Inactivo	Inactivo	Inactivo

Tolerancia

Tenga en cuenta las observaciones siguientes y compare con la Fig. 45:

- El campo de tolerancia permite, p. ej., cumplir de manera precisa el tiempo de permanencia a una temperatura determinada.
- El segmento siguiente no se procesa hasta que la temperatura real alcanza la banda de tolerancia (1), de modo que, p. ej., la rampa del segundo segmento no se inicia hasta 2 y lo hace con retardo.

- No obstante, si se selecciona una banda de tolerancia demasiado estrecha, se pueden provocar retardos no deseados. En casos extremos, la continuación del programa puede llegar a resultar imposible. No se debe elegir una banda de tolerancia demasiado estrecha, especialmente en caso de regulación externa. En el segmento 5 se ha introducido una tolerancia más grande, de modo que el tiempo deseado de 10 minutos se cumple pese a los transitorios (3).
- Solo las rampas llanas (lentas) deben, en caso necesario, programarse con una banda de tolerancia. Las rampas abruptas cercanas a la máxima velocidad posible de calentamiento o de refrigeración del equipo pueden ralentizarse considerablemente (4) en caso de que la banda de tolerancia (aquí en el segmento 2) sea muy estrecha.

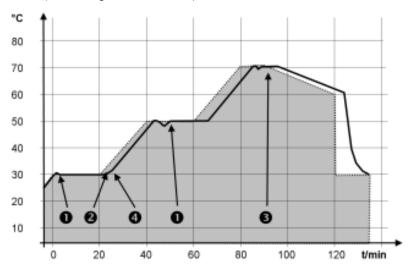


Fig. 45: Gráfico del programa, de consigna y real

El gráfico de la curva editada que se muestra arriba ilustra cómo la temperatura real reinante en la cubeta de baño (línea continua) va siguiendo la temperatura nominal del programador (con fondo gris).

6.7.2 Iniciar, interrumpir, continuar o finalizar el programa

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Use las teclas del cursor para elegir las opciones de menú *Programador*→ *Editar*.
 - ▶ En la pantalla se muestra el programa. Ahora lo puede editar.

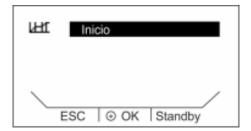


Fig. 46: Determinar el estado del programa

- 1. En el menú Programador, seleccione la opción de menú [Estado].
- 2. Tiene las siguientes opciones:
 - Para iniciar el programa, seleccione la opción [Inicio].
 - Si el programa está iniciado, se puede detener por medio de [Pausa].
 - Si el programa está detenido, se puede reanudar con [Continuar].
 - Para finalizar el programa, seleccione la opción [Parada].
 - La softkey [Standby] permite detener el programador. Una vez desactivado el modo de standby, el programador sigue funcionando en el modo elegido previamente (pausa o funcionamiento activo).

6.8 Parámetros de regulación

Varios parámetros de control que determinan el funcionamiento de los distintos tipos de producto de los termostatos PRO están preajustados de fábrica. Estos parámetros de control instalados han sido optimizados para la regulación interna y externa usando el agua como líquido caloportador.

- En función de la aplicación, puede ser necesario adaptar la configuración para cada caso concreto.
- El comportamiento de regulación también se ve afectado por la capacidad térmica y la viscosidad de los diferentes líquidos caloportadores.
 - No modifique los parámetros de control si no dispone de conocimientos suficientes sobre la técnica de regulación.

6.8.1 Fundamentos de la regulación

Aclaración de términos

Breve explicación de los términos

ajuste

- Valor de salida del regulador para equilibrar la diferencia del valor real respecto al valor de consigna (desviación de la regulación).

Controlador - El controlador PID funciona con gran precisión y rapidez y consta de tres componentes: P, I y D.

Rango pro- porcional Хр

El rango proporcional Xp indica el margen de temperatura en el que el componente proporcional (P) del regulador equivale al 0 – 100 % del valor máximo de la variable de ajuste. P. ej., si el valor ajustado para Xp es 10 K y la desviación de la regulación es de 2 K, significa que el componente P equivale al 20 % del valor de la variable de ajuste. Con una desviación de la regulación de 10 K y superior, la parte P comprende el 100 % de la variable de ajuste.

Tiempo de acción integral, Tn

El tiempo de acción integral es determinante para el componente integral (I) de la variable de ajuste. Define el intervalo en el que se integra una desviación de la regulación existente. Cuanto mayor es Tn, más despacio se integra la desviación de la regulación. De este modo, el control se ralentiza. Un In menor hace que el control sea más dinámico y finalmente provoca oscilaciones.

Tiempo de acción derivativa, Tv

El componente D de la variable de ajuste se forma a partir del tiempo de acción derivativa Tv. Influye en la velocidad de aproximación del valor real al valor de consigna y contrarresta el componente P y el componente I. Cuanto mayor sea el tiempo de acción derivativa Tv, mayor es la fuerza con la que se amortigua la señal de salida. La fórmula empírica es: $Tv = Tn \times 0.75$.

Tiempo de amortiguación Tď

- Tiempo de amortiguación del componente D. La fórmula empírica es: $Td = Tv \times 0,15$.

Limitación de corrección

Representa la máxima desviación admisible entre la temperatura reinante en la aplicación externa y la temperatura de la alimentación.

Optimización hidráulica

Un requisito importante para una regulación de calidad aceptable es una hidráulica bien diseñada. Por este motivo, es preciso establecer la mejor conexión posible entre la aplicación a atemperar y el equipo de regulación de temperatura.

- Utilizar mangueras cortas con gran sección transversal. Con ello, se reduce la resistencia al flujo. Puede circular mucho líquido caloportador en poco tiempo, consiguiendo así que el tiempo de circulación sea breve.
- Seleccionar un líquido caloportador que sea lo menos viscoso y que tenga la mayor capacidad térmica posible. Orden preferente: agua, agua/glicol, aceites, Fluorinert®.
- Ajustar el nivel de la bomba más alto posible.
- Si se trata de una aplicación en exterior, ajuste el caudal que circula a través de la aplicación externa a un valor lo más alto posible.
- En el caso de los termostatos de baño, asegúrese de que el baño cuente con una circulación suficiente.

Efectos de la viscosidad del líquido caloportador

Si el control con temperaturas bajas es estable, entonces será estable generalmente también a altas temperaturas. Si, en el caso contrario, un sistema es poco estable a altas temperaturas, entonces lo más probable es que a temperaturas menores se vuelva inestable, es decir, que sufra oscilaciones.

La viscosidad del líquido caloportador se modifica notablemente con la temperatura. A bajas temperaturas, los líquidos tienen una mayor viscosidad. Por este motivo, la calidad del control generalmente es peor con temperaturas bajas. De ahí que el ajuste del regulador deba llevarse a cabo en la parte baja del margen de temperatura que se desea cubrir.

P. ej., si el margen de temperatura de una aplicación es de -20 – 80 °C, el ajuste del regulador se debería efectuar a -10 – 20 °C.

Influencia de los parámetros de control en el comportamiento de regulación

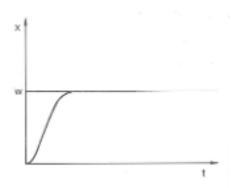
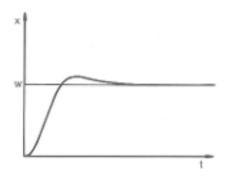
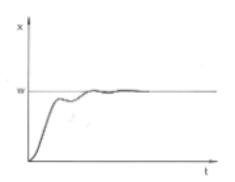
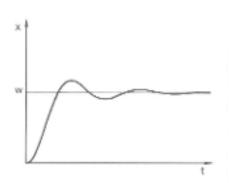


Fig. 47: Ajuste óptimo


Fig. 48: Parámetro de regulación Xp demasiado alto

Si el parámetro Xp que se selecciona es demasiado alto, entonces el valor real alcanza pronto el rango proporcional y la parte P será menor que el 100% de la variable de ajuste. La aproximación al valor de consigna se ralentiza. De este modo, la parte I que realiza la integración simultánea dispone de más tiempo para generar su parte de variable de ajuste. Si se ha alcanzado el valor de consigna, la parte I sumada en exceso provoca sobreoscilaciones por encima del valor de consigna. Si el rango proporcional Xp se reduce, la parte P permanece más tiempo en el 100%. Por este motivo, el valor real se acerca más rápidamente al valor de consigna y la parte I dispone de menos tiempo para integrar la diferencia de regulación. Se reduce la sobreoscilación.

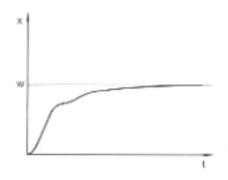

Si el rango proporcional que se selecciona es demasiado bajo, entonces la parte P de la variable de ajuste está demasiado tiempo en el 100%. Por consiguiente, este valor se reduce más rápidamente dentro del rango proporcional, es decir, la variable de ajuste disminuye con celeridad y la aproximación del valor real al valor de consigna casi se detiene. Debido a que la parte I no estaba operativa hasta ahora, el valor real se aproxima lentamente al valor de consigna.

Fig. 49: Parámetro de regulación Xp demasiado bajo

En el caso que se muestra, el ajuste del componente I es demasiado alto (parámetro Tn demasiado pequeño; es preciso aumentar Tn). La parte I integra la desviación de la regulación hasta que esta sea igual a O. Si esta integración transcurre con demasiada rapidez, entonces la variable de ajuste, es decir, la señal de salida del regulador, es demasiado alta. Como resultado, se produce una oscilación (decreciente) del valor real en torno al valor de consigna. El tiempo de acción derivativa (parámetro Tv) se debería adaptar con la fórmula siguiente: Tv = Tn x 0,75.

Fig. 50: Parámetros de regulación Tn y Tv demasiado bajos

El valor real aumenta relativamente deprisa conforme a la especificación del valor de consigna. El rango proporcional parece estar bien ajustado. Con una desviación decreciente de la regulación, la aproximación al valor de consigna se ralentiza notablemente. La acusada reducción de la parte proporcional (parte P) debe compensarse a través de la parte de integración (parte I). En este caso, la parte I se integra con demasiada lentitud. El parámetro Tn, que indica el intervalo de acción integral, también debe reducirse. El tiempo de acción derivativa (parámetro Tv) se debería adaptar con la fórmula siguiente: Tv = Tn x 0,75.

Fig. 51: Parámetros de regulación Tn y Tv demasiado altos

6.8.2 Vista general a través de parámetros de regulación internos

La regulación interna compara la temperatura de consigna $T_{\rm set}$ con la temperatura del baño $T_{\rm int}$ y calcula la variable de ajuste, es decir, la demanda de calor o refrigeración.

Denominación	Abreviatura	Unidad
Rango proporcional	Хр	K
Tiempo de acción integral	Tn	S
Tiempo de acción derivativa	Tv	S
Tiempo de amortiguación	Td	S

Si Tv manual/auto se encuentra en auto, Tv y Td no se pueden modificar. En este caso, se derivan con factores fijos de Tn.

Además, los parámetros siguientes pueden influir en la regulación interna:

- Límites de temperatura: Til y Tih \$\ Capítulo 5.9 «Ajuste de los límites de temperatura Tih y Til» en la página 70
- Límite de salida del controlador: Potencia de calefacción y potencia frigorífica ⇔ Capítulo 6.5 «Definición del límite de salida del controlador» en la página 82

6.8.3 Vista general a través de parámetros de regulación externos

A fin de mejorar la respuesta a la variable de referencia, el sistema de control del valor real externo está diseñado en forma de regulador en cascada de 2 etapas y consta de un regulador piloto (regulador externo) y un servocontrolador (regulador interno). También se necesita además la temperatura de la aplicación que se desea regular $T_{\rm ext}$. Esta se determina con un sensor de temperatura externo Pt100 o por medio de una interfaz para leer la temperatura real.

El regulador piloto compara la temperatura de consigna $T_{\rm set}$ con la temperatura externa reinante en la aplicación $T_{\rm ext}$ calcula en consecuencia la temperatura de consigna (consigna_interna) para el servocontrolador (regulador interno).

El servocontrolador compara la temperatura de consigna (consigna_interna) con la temperatura de impulsión actual y calcula la variable de ajuste, es decir, la medida con la que se calienta o se refrigera.

Limitación de corrección

Si se define un salto de temperatura por medio de la temperatura de consigna $T_{\rm set}$, puede ocurrir que la regulación ajuste una temperatura de alimentación que se encuentre muy por encima de la temperatura deseada para el recipiente externo $T_{\rm ext}$. Por ello se aplica una limitación de la corrección que define la máxima desviación admisible entre la temperatura de la alimentación $T_{\rm int}$ y la temperatura reinante en la aplicación externa $T_{\rm ext}$.

Parámetros de control del regulador piloto

En el regulador piloto (controlador PID_1 o regulador externo) se pueden ajustar los parámetros de control siguientes.

Denominación	Abreviatura	Unidad
Ganancia	Кре	-
Rango proporcional	Prop_E	K

Denominación	Abreviatura	Unidad
Tiempo de acción integral	Tne	S
Tiempo de acción derivativa	Tve	S
Tiempo de amortiguación	Tde	S

Parámetros de control del servocontrolador

En el servocontrolador (regulador P) se pueden ajustar los parámetros de control siguientes.

Denominación	Abreviatura	Unidad
Rango proporcional	Xpf	K

Si Tv manual/auto se encuentra en auto, no es posible modificar Tve, Tde ni Prop_E. En este caso, se derivan con factores fijos de Tne. En este caso, Prop_E es un valor constante predefinido.

También pueden influir en la regulación externa los parámetros siguientes:

- Límites de temperatura: Til y Tih ♦ Capítulo 5.9 «Ajuste de los límites de temperatura Tih y Til» en la página 70
- Límite de salida del controlador: Potencia de calefacción y potencia frigorífica & Capítulo 6.5 «Definición del límite de salida del controlador» en la página 82
- Limitación de corrección 🦫 «Limitación de corrección» en la página 93

6.8.4 Acceder al menú de control

- 1. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Use las teclas del cursor y la tecla de introducción de datos [OK] para seleccionar las opciones de menú *Parámetros* \rightarrow *Ajustes*.

6.8.5 Edición de los parámetros de regulación internos

Si necesita usar el límite de salida del controlador, ajuste este antes de adaptar los parámetros de control. \$\sim\text{ Capítulo 6.5 "Definición del límite de salida del controlador" en la página 82

En el equipo está activada la regulación interna. El cambio de regulación está explicado en & Capítulo 6.6.1 «Activación de la regulación externa y desactivación de la regulación interna» en la página 83.

Ajuste manual o automático de los parámetros de regulación

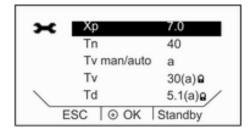


Fig. 52: Tv man/auto

La opción de menú [Tv man/auto] permite definir si desea adaptar manualmente los parámetros de regulación [Tv] y [Td] o bien si estos se deben ajustar de manera automática. Si el ajuste automático está activo, ambos parámetros de control se visualizan con el añadido (a) y un candado y no se pueden seleccionar. En este caso, [Tv] y [Td] se deducen a partir de [Tn] con unos factores fijos.

- En el menú Regulación, elija la opción de menú Parámetros de control
 → internos.
- 2. En el menú, seleccione la opción de menú *Tv man/auto*.
- 3. Confirme la selección con la [tecla de introducción de datos].
 - ► El ajuste manual o automático de los parámetros de control Tv y Td pasa a estar activo de inmediato.

Edición de los parámetros de regulación

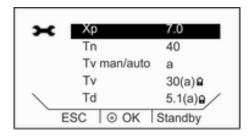


Fig. 53: Menú Parámetros de regulación internos

- En el menú Regulación, elija la opción de menú Parámetros de regulación → internos.
- 2. Seleccione un parámetro de control.

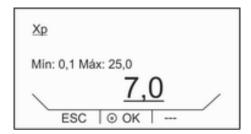


Fig. 54: Adaptación del parámetro de control Xp

- 3. Confirme la selección con la [tecla de introducción de datos].
 - Se visualiza una ventana de introducción. Se puede introducir el valor que se desee dentro del margen comprendido entre los valores límite mostrados.
- 4. Ajuste el valor como corresponda.
- 5. Confirme la operación con la [tecla de introducción de datos].

6.8.6 Edición de los parámetros de control externos

Si necesita usar el límite de salida del controlador, ajuste este antes de adaptar los parámetros de regulación \$\simp \text{Capítulo 6.5 «Definición del límite de salida del controlador» en la página 82

En el equipo está activada la regulación externa. El cambio de regulación está explicado en & Capítulo 6.6.1 «Activación de la regulación externa y desactivación de la regulación interna» en la página 83.

Ajuste manual o automático de los parámetros de regulación

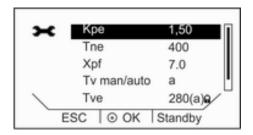


Fig. 55: Tv man/auto

La opción de menú [Tv man/auto] permite definir si desea adaptar manualmente los parámetros de control [Tve], [Tde] y [Prop_E] o bien si estos se deben ajustar de manera automática. Si el ajuste automático está activo, los tres parámetros de control se visualizan con el añadido (a) y un candado y no se pueden seleccionar. En este caso, [Tve] y [Tde] se derivan con factores fijos de [Tne].

- En el menú Regulación, seleccione la opción de menú Parámetros de control → externos.
- 2. En el menú, seleccione la opción de menú Tv man/auto.
- 3. Confirme la selección con la [tecla de introducción de datos].
 - ► El ajuste manual o automático de los parámetros de control Tve, Tde y Prop_E pasa a estar activo de inmediato.

Edición de los parámetros de regulación

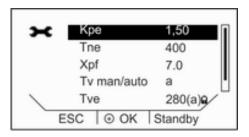


Fig. 56: Menú Parámetros de regulación externos

- 1. En el menú Regulación, seleccione la opción de menú Parámetros de regulación → externos.
- 2. Seleccione un parámetro de regulación.

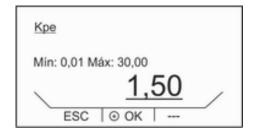


Fig. 57: Adaptación del parámetro de control Kpe

- 3. Confirme la selección con la [tecla de introducción de datos].
 - Se visualiza una ventana de introducción. Se puede introducir el valor que se desee dentro del margen comprendido entre los valores límite mostrados.
- 4. Ajuste el valor como corresponda.
- 5. Confirme la operación con la [tecla de introducción de datos].

6.9 Calibración del sensor de temperatura

Se requiere un termómetro de referencia calibrado que disponga del grado de precisión deseado. De lo contrario, no debería modificar la calibración de su equipo de termorregulación.

Si se detecta una desviación continua de la temperatura de $T_{\rm int}$ o $T_{\rm ext}$ con respecto al termómetro de referencia al comprobar la temperatura en estado estable, la desviación se puede igualar con el punto de menú *Calibración*.

Con el punto de menú Offset (compensación de 1 punto) se desplaza la curva característica del sensor de temperatura en paralelo con el valor introducido.

Con el punto de menú *Calibración de 2 puntos* (compensación de 2 puntos) se desplaza la curva característica del sensor de temperatura y se modifica adicionalmente la pendiente de la curva característica.

Es posible cambiar los valores de temperatura T_{int} y T_{ext} dentro de un rango de ± 3 K cada uno.

Compensación

- Para aplicaciones de baño internas, el termómetro de referencia debe colgarse en el baño de acuerdo con las especificaciones del certificado de calibración.
- Para aplicaciones externas, el termómetro de referencia debe montarse en l avance del equipo, según las indicaciones del certificado de calibración.
- Para la medición de la temperatura, espere hasta que el sistema se encuentre en un estado estable.
- 1. Para solicitar la visualización de la barra de menú, presione una tecla cualquiera en la ventana básica en Base.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- 3. Con la tecla del cursor y la tecla de introducción de datos, seleccione los puntos del menú Parámetros → Calibración → Pt1000 interno o → Pt100 externo → Compensación.
 - Se abre la ventana de introducción de datos.
- 4. Introduzca el valor de temperatura leído del termómetro de referencia en Base.
- 5. Confirme el valor nuevo con la tecla de introducción de datos.
 - Se acepta el nuevo valor.

Calibración de 2 puntos

- Para aplicaciones de baño internas, el termómetro de referencia debe colgarse en el baño de acuerdo con las especificaciones del certificado de calibración.
- Para aplicaciones externas, el termómetro de referencia debe montarse en l avance del equipo, según las indicaciones del certificado de calibración
- Los valores de temperatura inferior y superior deben estar separados por lo menos 40 K.
- Para la medición de la temperatura, espere hasta que el sistema se encuentre en un estado estable.
- 1. Ajuste un valor nominal bajo T_{set} en el equipo.
- 2. Espere hasta que el valor nominal y la temperatura del líquido caloportador se hayan aproximado.
- 3. Para solicitar la visualización de la barra de menú, presione una tecla cualquiera en la ventana básica en Base.
- 4. Presione la [tecla de introducción de datos] para acceder al menú.
- Con la tecla del cursor y la tecla de introducción de datos, seleccione los puntos del menú Parámetros → Calibración → Pt1000 interno o → Pt100 externo → 2 puntos inferior.
 - Se abre la ventana de introducción de datos.

- Introduzca el valor de temperatura leído del termómetro de referencia en Base.
- 7. Confirme el valor nuevo con la tecla de introducción de datos.
 - Se ha aceptado el valor más bajo.
- 8. Ajuste un valor nominal alto T_{set} en el equipo.
- Espere hasta que el valor nominal y la temperatura del líquido caloportador se hayan aproximado.
- **10.** Seleccione dentro del menú [Calibración] el punto de menú *2 puntos superior*.
- Introduzca el valor de temperatura leído del termómetro de referencia en Base.
- 12. Confirme el valor nuevo con la tecla de introducción de datos.
 - Se ha aceptado el valor más alto. La calibración de 2 puntos ha finalizado.

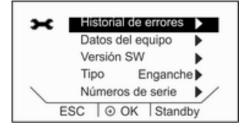
Restablecer la calibración de fábrica

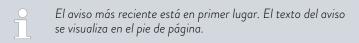
Si desea restablecer la calibración de fábrica, siga los pasos indicados en este punto de menú.

- 1. Para solicitar la visualización de la barra de menú, presione una tecla cualquiera en la ventana básica en Base.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- Con la tecla del cursor y la tecla de introducción de datos, seleccione los puntos del menú Parámetros → Calibración → Pt1000 interno o → Pt100 externo → Calibr. fábrica.
- 4. Seleccione la opción [Sí].
- 5. Confirme la selección con la tecla de introducción de datos [OK].
 - La calibración realizada por el cliente se borra y se reactiva la calibración configurada de fábrica.

6.10 Acceder al estado del equipo

- 1. Para visualizar la ventana básica en Base, presione una tecla cualquiera.
- 2. Presione la [tecla de introducción de datos] para acceder al menú.
- Use las teclas del cursor para elegir las opciones de menú
 → Parámetros → Estado equipo.
 - ▶ Se encuentra en el menú Estado equipo.
- 4. Tiene las siguiente opciones:
 - Leer el historial de errores
 - Consultar los datos del equipo
 - Consultar la versión del software
 - Consultar el tipo de equipo
 - Consultar el número de serie




Fig. 58: Estado equipo

Leer el historial de errores

Para poder analizar los errores, los equipos disponen de un historial de errores en el que se guardan hasta 140 mensajes de advertencia, error y alarma.

1. En el menú, elija → Estado equipo → Histor. alarmas.

2. Con las teclas de flecha arriba y abajo se puede navegar por la lista.

Respecto a cada aviso se visualiza la siguiente información:

- En Fuente se visualiza el módulo respectivo que origina el aviso.
- Código es la descripción cifrada de alarmas, advertencias o errores.
- Tipo especifica alarma, advertencia o error.

Fig. 59: Histor. alarmas

Solicitud de visualización del modelo del equipo y el tipo del equipo

En el menú Estado del equipo, el menú y el tipo del equipo se muestran directamente en la opción de menú. No se pueden efectuar ajustes en esa sección.

Consultar los datos del equipo

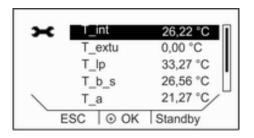


Fig. 60: Datos equipo

Esta pantalla sirve para que el servicio técnico de LAUDA pueda llevar a cabo un diagnóstico. No se pueden efectuar ajustes en esa sección.

- En el menú Estado del equipo, seleccione la opción de menú → Datos del equipo.
 - Se visualizan los parámetros más diversos del equipo.

Solicitud de visualización de la versión del software

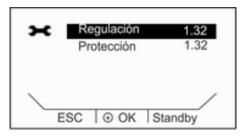


Fig. 61: Pantalla de las versiones de software

Solicitud de visualización de los números de serie

En los casos en los que sea preciso prestar servicio técnico in situ o por teléfono, es necesario conocer las versiones correspondientes del software instalado.

- 1. En el menú Estado del equipo, elija la opción de menú → Versión SW.
 - ▶ Se visualizan las versiones del software del equipo. También se muestran las versiones de software de las válvulas magnéticas conectadas, si las hay.

En los casos en los que sea preciso prestar servicio técnico in situ o por teléfono, es necesario conocer los números de serie.

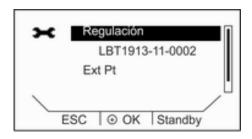


Fig. 62: Números serie

- 1. En el menú Estado del equipo, seleccione la opción de menú
 - → Numero serie.
 - Se muestran los números de serie del sistema de control, del sistema de refrigeración y de la unidad de mando a distancia Base.

7 Mantenimiento

7.1 Instrucciones generales de seguridad

;PELIGRO!

Contacto con piezas conductoras de corriente y en movimiento

Descarga eléctrica, colisión, corte, aplastamiento

- Antes de realizar cualquier tipo de trabajo de mantenimiento, el equipo debe desconectarse de la red.
- Solo el personal técnico puede realizar las tareas de reparación

;ADVERTENCIA!

No se detecta si la protección contra temperatura excesiva o la protección contra nivel bajo no funcionan

Quemadura, escaldadura, incendio

 Comprobar periódicamente la función Tmáx y la protección contra nivel bajo.

¡ATENCIÓN!

Contacto con piezas del equipo, accesorios y líquido caloportador en estado caliente o frío

Quemadura, escaldadura, congelación

 Asegúrese de que las partes del equipo, los accesorios y el líquido caloportador se encuentran a temperatura ambiente antes de tocarlos.

Las instrucciones de seguridad indicadas a continuación son relevantes para los equipos que funcionan con refrigerante natural:

ADVERTENCIA!

Daños mecánicos en el circuito de refrigerante

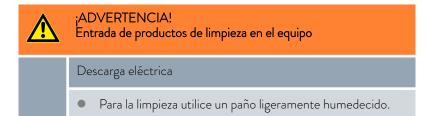
Explosión, incendio

- Las labores de servicio deben ser efectuadas exclusivamente por personal que cuente con la debida formación.
- Ventile la sala de inmediato y a fondo.
- Durante este tiempo, no accione ningún interruptor del equipo ni de ningún otro punto de la sala.
- No genere llamas ni chispas y no fume.

ADVERTENCIA!

Salida de refrigerante en el circuito de agua de refrigeración

Explosión, incendio


 En caso de puesta fuera de servicio o de peligro de congelación, vacíe el circuito de agua de refrigeración de la máquina frigorífica usando aire comprimido o un aspirador de polvo industrial (resistente al agua). Para ello, haga circular aire comprimido a través del circuito.

7.2 Intervalos de mantenimiento

Los intervalos de mantenimiento descritos en la siguiente tabla deben cumplirse. Antes de cada funcionamiento prolongado desatendido, se deben realizar los siguientes trabajos de mantenimiento.

Intervalo	Trabajo de mantenimiento
Cada semana	Comprobación de la estanqueidad del vaciado mediante inspección externa visual
Cada mes	Comprobación del estado exterior del equipo
	Comprobación de la fatiga de las mangueras externas
	Limpieza del condensador refrigerado por aire
	Limpieza del colector de suciedad
	Comprobación de la protección contra temperatura excesiva
	Comprobación de la protección contra nivel bajo
Cada trimestre	Descalcificación de la máquina frigorífica y del serpentín de refrigeración
	(según la dureza del agua y el tiempo de funcionamiento se debe elegir un intervalo más corto)
Cada medio año	Comprobación del líquido caloportador

7.3 Limpieza del equipo

Asimismo, tenga en cuenta lo siguiente:

- Para limpiar el elemento de mando use tan solo agua y detergente. No utilice acetona ni disolventes. Esto podría producir daños permanentes en la superficie de plástico.
- Si el equipo ha estado en contacto con materiales peligrosos, asegúrese de que sea sometido a una descontaminación.

- No se permite el uso de productos de descontaminación o limpieza que puedan reaccionar con las piezas del equipo o con las sustancias que este contiene y provocar un peligro.
- Recomendamos usar como producto de descontaminación el etanol. Si tiene alguna duda en torno a la compatibilidad entre los productos de descontaminación o limpieza y las piezas equipo o las sustancias que este contiene, póngase en contacto con el LAUDA Service.

7.4 Limpieza de los condensadores refrigerados por aire

Esta sección afecta a:

termostatos de refrigeración refrigerados por aire

;ADVERTENCIA!

Daños mecánicos en el circuito de refrigerante

Explosión, incendio

Para limpiar el condensador no utilice objetos afilados.

:ATFNCIÓN!

Contacto con las aletas de bordes afilados del condensador

Cortar

- Limpie el condensador usando una herramienta auxiliar apropiada, p. ej., una escobilla o aire comprimido.
- 1. Desconecte el equipo.
- 2. Termostato de circulación de refrigeración
 Si se trata de un termostato de circulación, agarre el panel frontal
 con ambas manos por la parte inferior y tire de él hacia sí para
 retirarlo. Para evitar daños, descienda el panel frontal lentamente
 y con cuidado.
 - Termostato de baño de refrigeración Si se trata de un termostato de baño, agarre el panel frontal con ambas manos por la parte superior y tire de él hacia sí para retirarlo. Para evitar daños, descienda el panel frontal lentamente y con cuidado.

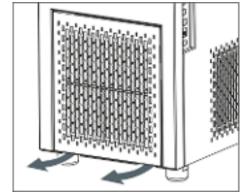
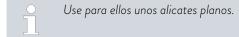


Fig. 63: Retirada/colocación del panel frontal

El panel frontal se sujeta con 4 cierres magnéticos.

- 3. Pase una escobilla por las aletas del condensador como si las estuviera barriendo. Para limpiar las aletas también puede usar un aspirador de polvo.
- 4. Coloque el panel frontal otra vez con cuidado.

7.5 Limpieza del condensador refrigerado por agua


Para poder disponer integramente de toda la potencia frigorifica, es preciso limpiar periódicamente el circuito de agua de refrigeración y el colector de suciedad.

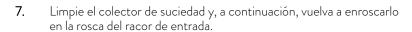

Limpiar los colectores de suciedad

Fig. 64: Contratuercas en los racores de agua de refrigeración

- 1. Apague el equipo con el conmutador de alimentación.
- 2. Suelte la manguera de agua de refrigeración de la entrada de la alimentación de agua de refrigeración.
 - Deje la manguera de salida de agua de refrigeración (OUT) conectada en el equipo.
- Haga circular aire comprimido a través de la manguera de agua de refrigeración en el sentido que va hacia el equipo. Haga circular aire comprimido tanto tiempo como sea necesario para evacuar toda el agua del equipo.
- Afloje manualmente la contratuerca de la entrada de refrigeración por agua (IN) del equipo. Desenrosque la contratuerca del racor.
 - Si presenta resistencia, sujetar por el hexágono con unos alicates.
- 5. Retire del equipo el tubo de entrada.
- 6. Desenrosque el colector de suciedad del racor de entrada.

- 8. Enrosque de nuevo la manguera con la contratuerca en el racor de entrada.
- 9. Apriete la contratuerca con la mano de modo que quede fijada.

Fig. 65: Colector de suciedad montado y con alicates

Descalcificación del circuito de agua de refrigeración

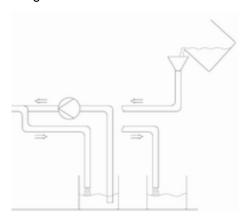


Fig. 66: Descalcificación

- 1. Apague el equipo con el conmutador de alimentación y prepare en consecuencia la operación de descalcificación.
 - El producto descalcificador se debe suministrar por medio de una bomba o embudo a través de la entrada de la refrigeración por agua. El retorno del producto descalcificador tiene lugar a través de la manguera de retorno de la refrigeración por agua y se vierte en un recipiente de capacidad suficiente (aprox. 15 litros).
 - Para llevar a cabo la descalcificación es preciso usar el producto descalcificador de LAUDA (número de pedido LZB 126, envase de 5 kg). Para la manipulación de los productos químicos, lea las instrucciones de seguridad y las instrucciones de uso de este producto.
- 2. Suelte la manguera de agua de refrigeración de la entrada de la alimentación de agua de refrigeración.
- 3. Suelte la manguera de agua de refrigeración del retorno de la alimentación de agua de refrigeración.
- 4. Introduzca en el recipiente el extremo suelto de la manguera de retorno.
- 5. Llene la manguera de alimentación de la refrigeración por agua con producto descalcificador de LAUDA (bomba o embudo).
- **6.** Añada o bombee producto descalcificador de manera continua. Continúe con este proceso hasta que disminuya la reacción de espuma. Por lo general, esta operación dura de 20 a 30 minutos.
- 7. A continuación, use aire comprimido para vaciar el condensador.
 - Encontrará información más detallada sobre el vaciado de los condensadores en 🗞 «Vaciado del condensador refrigerado por agua» en la página 106.
- 8. Lave a fondo el equipo con agua tratada.
 - Deje que circulen al menos 10 litros de agua.
- 9. Puede volver a conectar el equipo a la alimentación de agua de refrigeración.

Vaciado del condensador refrigerado por agua

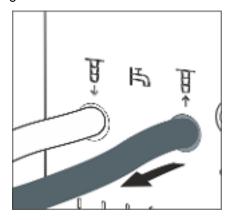


Fig. 67: Conexión de agua de refrigeración

- 1. Apague el equipo con el conmutador de alimentación.
- Suelte la manguera de agua de refrigeración de la entrada de la alimentación de agua de refrigeración.
 - Deje la manguera de salida de agua de refrigeración (OUT) conectada en el equipo.
- 3. Haga circular aire comprimido a través de la manguera de agua de refrigeración en el sentido que va hacia el equipo. Haga circular aire comprimido tanto tiempo como sea necesario para evacuar toda el agua del equipo.

7.6 Comprobar el líquido caloportador

Se debe renovar el líquido caloportador degenerado o contaminado. Solo se puede volver a utilizar el líquido caloportador si los resultados de las pruebas correspondientes lo autorizan. La comprobación del líquido caloportador debe cumplir con la norma DIN 51529.

;ATENCIÓN! Contacto con líquido caloportador caliente/frío

Escaldadura, congelación

 Para efectuar el análisis, espere hasta que el líquido caloportador alcance la temperatura ambiente.

7.7 Comprobación de la protección contra temperatura excesiva

Si la temperatura del baño rebasa la temperatura máxima [Tmáx], el equipo debe desconectarse. Los componentes del equipo son desconectados a través del sistema electrónico.

- Conecte el equipo.
- 2. Para solicitar la visualización de la ventana básica en Base, presione una tecla cualquiera.
- 3. Utilice el botón giratorio para bajar lentamente la temperatura máxima [Tmax] a unos pocos °C por encima de la temperatura del baño Tint.
 - ► En la pantalla se muestra la temperatura máxima *Tmáx* recién ajustada.

La temperatura máxima es aceptada de manera automática y la ventana en la que aparece Tmáx queda reemplazada al cabo de unos pocos segundos por la ventana básica.

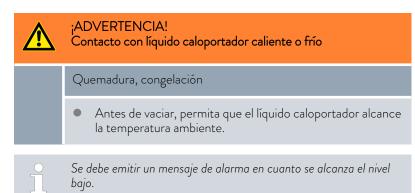


Fig. 68: Alarma de exceso de temperatura

- 4. Ahora ajuste la temperatura de consigna [Tset] por encima de la temperatura máxima *Tmáx*. Confirme la temperatura de consigna con la tecla de introducción de datos [OK].
 - ▶ El equipo calienta por encima de la temperatura máxima. Cuando se supera la temperatura máxima, el equipo se desconecta. El indicador visual (LED) de funcionamiento y averías parpadea en color rojo. En la parte superior de la pantalla aparece el texto Standby.
- 5. Use el botón giratorio para volver a ajustar la temperatura máxima correcta
 - En la pantalla se muestra la temperatura máxima Tmáx recién ajustada.
 - La temperatura máxima es aceptada de manera automática y la ventana en la que aparece *Tmáx* queda reemplazada al cabo de unos pocos segundos por la ventana básica.
- **6.** Presione la [tecla roja] para desbloquear. Esta tecla se encuentra en la parte posterior o en el lateral, según el equipo.
 - La luz roja se apaga. La señal acústica se desconecta. El equipo reanuda su funcionamiento.

7.8 Comprobación de la protección contra nivel bajo

Antes de que el nivel de líquido descienda lo suficiente para que el elemento térmico no esté completamente cubierto de líquido, suena una señal doble de alarma. En la pantalla aparece *Nivel bajo*. Los componentes del equipo son desconectados a través del sistema electrónico.

Se muestran los niveles 9 a 0.

- 1. Conecte el equipo y la bomba. Ajuste la temperatura del baño a la temperatura ambiente.
- 2. Reduzca el nivel del baño. Para ello, evacue líquido caloportador a través del racor de vaciado.
 - La pantalla indica el descenso del líquido caloportador.

Cuando se supera el nivel 1 en sentido descendente, el equipo se desconecta y en la pantalla aparece el mensaje *Alarma*. El indicador visual (LED) de funcionamiento y averías parpadea en color rojo.

- 3. Añada líquido caloportador.
 - ▶ El nivel de líquido aumenta en la pantalla.
- 4. Presione la [tecla roja] para desbloquear. Esta tecla se encuentra en la parte posterior o en el lateral, según el equipo.
 - ▶ El LED rojo se apaga. La señal acústica se desconecta.

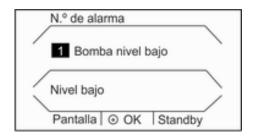


Fig. 69: Alarma de nivel bajo

8 Fallos

8.1 Alarmas, advertencias y errores

Todas las alarmas, mensajes de errores y advertencias que se hayan activado en el aparato se muestran en la pantalla en forma de texto.

Procedimiento en caso de alarmas

Las alarmas son relevantes para la seguridad. La calefacción se desconecta y el indicador visual (LED) de funcionamiento y averías parpadea en color rojo. El equipo emite un tono de advertencia doble. Una vez eliminadas las causas de los fallos, las alarmas se pueden anular con la tecla roja de desbloqueo. Esta tecla se encuentra en la parte posterior o en el lateral, según el aparato.

Encontrará una lista de las alarmas en 🖔 Capítulo 8.2 «Alarmas» en la página 109.

Procedimiento para las advertencias

Las advertencias no son relevantes para la seguridad. El equipo sigue funcionando. El equipo emite brevemente una señal de advertencia. Se emiten las advertencias de forma periódica. Una vez eliminadas las causas de los fallos, las advertencias se pueden confirmar en la unidad de mando a distancia Base o Command Touch.

Encontrará una lista de las advertencias en 🔖 Capítulo 8.3 «Advertencias - Sistema de control» en la página 110 y 🔖 Capítulo 8.4 «Advertencias - Sistema de seguridad» en la página 112.

Procedimiento en caso de errores

En caso de que ocurra un error se emitirá un tono de advertencia doble.

En caso de error, apague el equipo con el interruptor de alimentación. Si el error aparece de nuevo tras conectar el equipo, anote el mensaje de error junto con el código de detalle. Póngase en contacto con el **servicio técnico de equipos de termorregulación LAUDA**. Encontrará los datos de contacto en \$\mathbb{C}\$ Capítulo 13.4 «Contacto LAUDA» en la página 132.

En la pantalla del equipo se muestran los mensajes de error junto con un código de detalle y un número secuencial en función del orden de aparición.

8.2 Alarmas

Emisión	Descripción
Nivel bajo	La bomba ha detectado el nivel bajo (el número de revoluciones de la bomba es demasiado alto)
Nivel bajo	Se ha detectado un nivel bajo mediante el flotador
Exceso de temperatura	Exceso de temperatura (T > Tmáx)

Emisión	Descripción
Bomba bloqueada	Bomba bloqueada (paro de la bomba)
Int.Base/Command	Falta la unidad de mando a distancia Base o esta ha sido retirada durante el funcionamiento.

Código	Emisión	Descripción
Al1	T ext Pt100	El valor real externo de Pt100 no está disponible.
Al 2	T ext analógico	El valor real externo de señal analógica no está disponible.
Al 3	T ext en serie	El valor real externo de la interfaz serie no está disponible.
Al 4	Entrada analógica 1	Módulo analógico: Entrada de corriente 1, interrupción.
Al 5	Entrada analógica 2	Módulo analógico: Entrada de corriente 2, interrupción.
Al 7	Digital Input	Fallo en la entrada digital / contacto de conmutación
Al 12	T ext Ethernet	No hay señal del valor actual a través del módulo Ethernet
Al 14	Interrupción de la conexión	Interrupción de la conexión en el módulo de interfaces

8.3 Advertencias - Sistema de control

Todas las advertencias empiezan con el prefijo 0. Al prefijo le siguen dos cifras más. Estas cifras figuran en la siguiente tabla.

Código	Edición inglesa	Descripción
01	CAN OVERFLOW	Rebosamiento durante la recepción de CAN
02	WATCHDOG RESET	Watchdog-Reset
03	TIL LIMIT	Limitación til activa
04	TIH LIMIT	Limitación tih activa
05	HS OVERHEAT	El disipador de calor está sobrecalentado
06	LIBRE 5	
07	LIBRE 6	
08	INVALID PARAMETER	Parámetro no válido en la memoria
09	UNKNOWN NODE	Está conectado un módulo de nodo CAN desconocido
10	OLD SWV R	Versión del software del sistema de control demasiado antigua
11	OLD SWV S	Versión del software del sistema de protección demasiado antigua
12	OLD SWV B	Versión del software del sistema de manejo demasiado antigua

Código	Edición inglesa	Descripción
13	OLD SWV T	Versión del software del sistema de regulación de la tem- peratura demasiado antigua
14	OLD SWV A	Versión del software del módulo analógico demasiado antigua
15	OLD SWV RS232	Versión del software del módulo RS232 demasiado antigua
16	OLD SWV D	Versión del software del módulo digital demasiado antigua
17	OLD SWV M0	Versión del software de la válvula solenoide (válvula de agua de refrigeración) demasiado antigua
18	OLD SWV M1	Versión del software de la válvula solenoide (automatismo de rellenado) demasiado antigua
19	OLD SWV M2	Versión del software de la válvula solenoide (estabilizador de nivel) demasiado antigua
20	OLD SWV M3	Versión del software de la válvula solenoide (válvula de bloqueo 1) demasiado antigua
21	OLD SWV M4	Versión del software de la válvula solenoide (válvula de bloqueo 2) demasiado antigua
22	OLD SWV M5	Versión del software del refrigerador de alta temperatura demasiado antigua
23	OLD SWV P0	Versión del software de la bomba O demasiado antigua
24	OLD SWV P1	Versión del software de la bomba 1 demasiado antigua
25	OLD SWV P2	Versión del software de la bomba 2 demasiado antigua
26	OLD SWV P3	Versión del software de la bomba 3 demasiado antigua
27	OLD SWV S0	Versión del software del módulo Pt externo demasiado antigua
28	OLD SWV EN	Versión del software del módulo Ethernet demasiado antigua
29	OLD SWV EC	Versión del software del módulo EtherCAT demasiado antigua
30	OLD SWV U	Versión del software del módulo universal demasiado antigua
31	OLD SWV B1	Versión del software del sistema de manejo 1 (command o base) demasiado antigua
32	SWV RESERVED	Reservado para Versión del software XXX demasiado antigua
33	CALIBRATION	Calibración errónea de un sensor de temperatura
34	STACK ADC OVERFLOW	TaskADC: Desbordamiento de pila
35	STACK CHECK OVERFLOW	TaskCheck: Desbordamiento de pila
36	STACK USB OVERFLOW	TaskUSB: Desbordamiento de pila
37	STACK EN OVERFLOW	TaskEthernet: Desbordamiento de pila

Código	Edición inglesa	Descripción
38	STACK CAN OVERFLOW	TaskCan: Desbordamiento de pila
39	STACK CONTROL OVERFLOW	TaskControl: Desbordamiento de pila
56	FREI56	

8.4 Advertencias - Sistema de seguridad

Todas las advertencias empiezan con el prefijo 1. Al prefijo le siguen dos cifras más. Estas cifras figuran en la siguiente tabla.

Código	Edición inglesa	Descripción
O1	CAN OVERFLOW	Rebosamiento durante la recepción de CAN
02	WATCHDOG RESET	Watchdog-Reset
03	SAFE MODE	SAFE MODE de la señal como advertencia
04	NO RESPONSE RTT	No se recibe respuesta a una solicitud de pruebe de relé/triac
05	BATH LOLEVEL FLOAT	Nivel bajo del flotador (de momento nivel 2)
06	LIBRE 5	
07	LIBRE 6	
08	INVALID PARA NV	Parámetro no válido en la memoria
09	UNKNOWN NODE	Está conectado un módulo de nodo CAN desconocido
10	OLD SWV R	Versión del software del sistema de control demasiado antigua
11	OLD SWV S	Versión del software del sistema de protección demasiado antigua
12	OLD SWV B	Versión del software del sistema de manejo demasiado antigua
13	OLD SWV T	Versión del software del sistema de regulación de la tem- peratura demasiado antigua
14	OLD SWV A	Versión del software del módulo analógico demasiado antigua
15	OLD SWV RS232	Versión del software del módulo RS232 demasiado antigua
16	OLD SWV D	Versión del software del módulo digital demasiado antigua
17	OLD SWV M0	Versión del software de la válvula solenoide (válvula de agua de refrigeración) demasiado antigua
18	OLD SWV M1	Versión del software de la válvula solenoide (automatismo de rellenado) demasiado antigua

Código	Edición inglesa	Descripción
19	OLD SWV M2	Versión del software de la válvula solenoide (estabilizador de nivel) demasiado antigua
20	OLD SWV M3	Versión del software de la válvula solenoide (válvula de bloqueo 1) demasiado antigua
21	OLD SWV M4	Versión del software de la válvula solenoide (válvula de bloqueo 2) demasiado antigua
22	OLD SWV M5	Versión del software del refrigerador de alta temperatura demasiado antigua
23	OLD SWV P0	Versión del software de la bomba O demasiado antigua
24	OLD SWV P1	Versión del software de la bomba 1 demasiado antigua
25	OLD SWV P2	Versión del software de la bomba 2 demasiado antigua
26	OLD SWV P3	Versión del software de la bomba 3 demasiado antigua
27	OLD SWV S0	Versión del software del módulo Pt externo demasiado antigua
28	OLD SWV EN	Versión del software del módulo Ethernet demasiado antigua
29	OLD SWV EC	Versión del software del módulo EtherCAT demasiado antigua
30	OLD SWV U	Versión del software del módulo universal demasiado antigua
31	OLD SWV B1	Versión del software del sistema de manejo 1 (command o base) demasiado antigua
32	SWV RESERVED	Reservado para Versión del software XXX demasiado antigua
33	CAN WARNING	Ha surgido un problema en la comunicación CAN
34	CALIBRATION	Calibración errónea de un sensor de temperatura
56	FREI56	

8.5 Advertencias - Smartcool

Todas las advertencias empiezan con el prefijo 3. Al prefijo le siguen dos cifras más. Estas cifras figuran en la siguiente tabla.

Código	Edición inglesa	Descripción
01	CAN receive overf	Rebosamiento durante la recepción de CAN
02	Watchdog Reset	Watchdog-Reset
03	Missing SM adaption1	Ejecutar marcha de adaptación
04	Pressure switch 1 activated	Presostato KM1 del circuito de refrigeración activado

Clixon O7 Invalid Parameter Parámetro no admisible en la memoria O8 CAN system Problema durante el intercambio de datos internos O9 Unknown Modul Módulo desconocido conectado 10 SWV CONTROL OLD Versión del software del sistema de manejo demasiado antigua 11 SWV SAFETY OLD Versión del software del sistema de protección demasia antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiado antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiado antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiado antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiado antigua OVENSIÓN del software del módulo de válvulas 2 demasiado antigua OVENSIÓN del software del módulo de válvulas 3 demasiado antigua OVENSIÓN del software del módulo de válvulas 3 demasiado antigua	Código	Edición inglesa	Descripción
Clixon O7 Invalid Parameter Parámetro no admisible en la memoria O8 CAN system Problema durante el intercambio de datos internos O9 Unknown Modul Módulo desconocido conectado 10 SWV CONTROL OLD Versión del software del sistema de manejo demasiado antigua 11 SWV SAFETY OLD Versión del software del sistema de protección demasia antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiado antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiado antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiado antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiado antigua OVENSIÓN del software del módulo de válvulas 2 demasiado antigua OVENSIÓN del software del módulo de válvulas 3 demasiado antigua OVENSIÓN del software del módulo de válvulas 3 demasiado antigua	05	CONDENSER DIRTY	Condensador sucio → limpiar
O8 CAN system Problema durante el intercambio de datos internos O9 Unknown Modul Módulo desconocido conectado 10 SWV CONTROL OLD Versión del software del sistema de manejo demasiado antigua 11 SWV SAFETY OLD Versión del software del sistema de protección demasia antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiad antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	06	KLIXON1	KM1: to1 demasiado alto, probablemente ha activado el clixon
Unknown Modul Módulo desconocido conectado Versión del software del sistema de manejo demasiado antigua SWV SAFETY OLD Versión del software del sistema de protección demasia antigua SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua Versión del software del módulo analógico demasiado antigua Versión del software del módulo serie demasiado antigua SWV SERIAL OLD Versión del software del módulo de contacto demasiado antigua SWV CONTACT OLD Versión del software del módulo de válvulas O demasiado antigua SWV VALVE 0 OLD Versión del software del módulo de válvulas 1 demasiado antigua SWV VALVE 1 OLD Versión del software del módulo de válvulas 2 demasiado antigua SWV VALVE 2 OLD Versión del software del módulo de válvulas 3 demasiado antigua Versión del software del módulo de válvulas 3 demasiado antigua	07	Invalid Parameter	Parámetro no admisible en la memoria
10 SWV CONTROL OLD Versión del software del sistema de manejo demasiado antigua 11 SWV SAFETY OLD Versión del software del sistema de protección demasia antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiado antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiado antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiado antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiado antigua Versión del software del módulo de válvulas 3 demasiado antigua	08	CAN system	Problema durante el intercambio de datos internos
antigua 11 SWV SAFETY OLD Versión del software del sistema de protección demasia antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiado antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiado antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiado antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiado antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiado antigua	09	Unknown Modul	Módulo desconocido conectado
antigua 13 SWV COOL OLD Versión del software del sistema de regulación de la ter peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigua 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiad antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	10	SWV CONTROL OLD	
peratura demasiado antigua 14 SWV ANALOG OLD Versión del software del módulo analógico demasiado antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigu 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiad antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	11	SWV SAFETY OLD	Versión del software del sistema de protección demasiado antigua
antigua 15 SWV SERIAL OLD Versión del software del módulo serie demasiado antigu 16 SWV CONTACT OLD Versión del software del módulo de contacto demasiad antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	13	SWV COOL OLD	Versión del software del sistema de regulación de la tem- peratura demasiado antigua
16 SWV CONTACT OLD Versión del software del módulo de contacto demasiad antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	14	SWV ANALOG OLD	
antigua 17 SWV VALVE 0 OLD Versión del software del módulo de válvulas 0 demasiad antigua 18 SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	15	SWV SERIAL OLD	Versión del software del módulo serie demasiado antigua
antigua SWV VALVE 1 OLD Versión del software del módulo de válvulas 1 demasiad antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiad antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiad antigua	16	SWV CONTACT OLD	Versión del software del módulo de contacto demasiado antigua
antigua 19 SWV VALVE 2 OLD Versión del software del módulo de válvulas 2 demasiaca antigua 20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiaca antigua	17	SWV VALVE 0 OLD	Versión del software del módulo de válvulas O demasiado antigua
20 SWV VALVE 3 OLD Versión del software del módulo de válvulas 3 demasiadantigua	18	SWV VALVE 1 OLD	Versión del software del módulo de válvulas 1 demasiado antigua
antigua	19	SWV VALVE 2 OLD	Versión del software del módulo de válvulas 2 demasiado antigua
21 SWV VALVE 4 OLD Versión del software del módulo de válvulas 4 demasias	20	SWV VALVE 3 OLD	Versión del software del módulo de válvulas 3 demasiado antigua
antigua	21	SWV VALVE 4 OLD	Versión del software del módulo de válvulas 4 demasiado antigua
22 SWV PUMP 0 OLD Versión del software del módulo de bombas 0 demasia antigua	22	SWV PUMP 0 OLD	Versión del software del módulo de bombas O demasiado antigua
23 SWV PUMP 1 OLD Versión del software del módulo de bombas 1 demasiad antigua	23	SWV PUMP 1 OLD	Versión del software del módulo de bombas 1 demasiado antigua
24 SWV PUMP 2 OLD Versión del software del módulo de bombas 2 demasiad antigua	24	SWV PUMP 2 OLD	Versión del software del módulo de bombas 2 demasiado antigua
25 SWV PUMP 3 OLD Versión del software del módulo de bombas 3 demasiad antigua	25	SWV PUMP 3 OLD	Versión del software del módulo de bombas 3 demasiado antigua
26 SWV HTC OLD Versión del software del refrigerador de alta temperatu demasiado antigua	26	SWV HTC OLD	Versión del software del refrigerador de alta temperatura demasiado antigua
27 SWV EXT PT OLD Versión del software del módulo Pt externo demasiado antigua	27	SWV EXT PT OLD	Versión del software del módulo Pt externo demasiado antigua
28 SWV ETHERNET OLD Versión del software del módulo Ethernet demasiado antigua	28	SWV ETHERNET OLD	

Código	Edición inglesa	Descripción
29	SWV ETHERCAT OLD	Versión del software del módulo EtherCAT demasiado antigua
30	SWV UNIVERSAL	Versión del software del módulo universal demasiado antigua
31	SWV COMMAND 1 OLD	Versión del software del sistema de manejo 1 (command o base) demasiado antigua
32	SWV RESERVED	Reservado para Versión del software XXX demasiado antigua
33	MISSING ADAPT2	
34	PRESS SWITCH2	Presostato KM2 activado
35	KLIXON2	KM2: to1 demasiado alto, probablemente ha activado el clixon
36	SMIN TOO SMALL	to1 demasiado pequeña en la posición mínima
37	VALVE NOT CLOSED	La válvula de refrigeración no cierra correctamente durante la marcha de adaptación
38	CALIBRATION	Calibración errónea de un sensor de temperatura
39	VALVE CHANGED	Se ha cambiado/sustituido una válvula
40	WRONG NET FREQUENCY	
41	WRONG NET VOLTAGE	
42	NO PRO TYPE	No es un tipo de equipo PRO válido
43	NO PRO VOLTAGE	No es un ajuste de tensión de suministro válido para PRO
44	KM CURRENT NOT OK	Frecuencia de la máquina frigorífica incorrecta
45	STACK OVERFLOW CAN	TaskCan: Superado el 90 % de aprovechamiento de la pila
46	STACK OVERFLOW ADC	TaskAdc: Superado el 90 % de aprovechamiento de la pila
47	STACK OVERFLOW CHECK	TaskCheck: Superado el 90 % de aprovechamiento de la pila
48	STACK OVERFLOW COOL	TaskCool: Superado el 90 % de aprovechamiento de la pila
49	STACK OVERFLOW FAN	TaskFan: Superado el 90 % de aprovechamiento de la pila
50	RTOS MISC	
51	KM OFF AT SERV	La máquina frigorífica se desconecta durante la adapta- ción/lavado
52	Libre 52	
53	Libre 53	
54	Libre 54	
55	Libre 55	
56	Libre 56	

9 Puesta fuera de servicio

9.1 Indicaciones generales para la puesta fuera de servicio

Indicaciones para la puesta fuera de servicio o en caso de peligro de congelación

- En los termostatos de baño de calefacción y los termostatos de circulación de calefacción, vacíe la manguera de agua de refrigeración (ambos sentidos son apropiados) usando aire comprimido o un aspirador de polvo industrial resistente al agua.
- En los equipos con máquina frigorífica, vacíe el circuito de agua de refrigeración de la máquina frigorífica (ambos sentidos son apropiados) usando aire comprimido o un aspirador de polvo industrial resistente al agua.
- En los termostatos de circulación, vacíe el lado de aspiración de la cámara de bombeo usando aire comprimido o un aspirador de polvo industrial resistente al agua.

I

;AVISO

Salida de refrigerante en el circuito de agua de refrigeración

Daños en el equipo

 En caso de puesta fuera de servicio o de peligro de congelación, vacíe el circuito de agua de refrigeración de la máquina frigorifica usando aire comprimido o un aspirador de polvo industrial (resistente al agua). Para ello, haga circular aire comprimido a través del circuito.

¡AVISO! La potencia de la bomba disminuye

Daños en el equipo

 En caso de puesta fuera de servicio o de peligro de congelación, vacíe por completo el lado de aspiración de la bomba.
 Haga circular aire comprimido a través del circuito.

Las instrucciones de seguridad indicadas a continuación son relevantes para los equipos que funcionan con refrigerante natural:

¡ADVERTENCIA! Salida de refrigerante en el circuito de agua de refrigeración

Explosión, incendio

En caso de puesta fuera de servicio o de peligro de congelación, vacíe el circuito de agua de refrigeración de la máquina frigorífica usando aire comprimido o un aspirador de polvo industrial (resistente al agua). Para ello, haga circular aire comprimido a través del circuito.

Encontrará información más detallada sobre el vaciado del líquido caloportador en 🖔 Capítulo 9.2 «Cambio/vaciado del líquido caloportador» en la página 117.

9.2 Cambio/vaciado del líquido caloportador

;ADVERTENCIA!

Contacto con líquido caloportador caliente o frío

Quemadura, congelación

Antes de vaciar, permita que el líquido caloportador alcance la temperatura ambiente.

ADVERTENCIA!

. Salpicaduras de líquido caloportador

Lesiones en los ojos

Siempre que se efectúen trabajos en el equipo es preciso llevar puestas unas gafas de protección apropiadas.

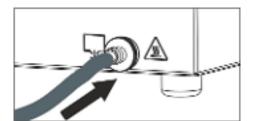


Fig. 70: Conexión de la manguera

- Tenga en cuenta las directrices para la eliminación de los líquidos caloportadores usados.
- 1. Deje que el equipo y el líquido caloportador se enfríen o se calienten a temperatura ambiente.
- 2. Apague el equipo y desenchufe el conector de alimentación eléctrica.
- 3. Conecte una manguera en el racor de vaciado.
- 4. Lleve el otro extremo de la manguera hasta un recipiente apropiado para recoger el líquido caloportador.

Si el volumen de llenado es grande, puede ser necesario efectuar varias operaciones de vaciado.

- 5. Abra la válvula de vaciado. Para ello, gírela en sentido contrario a las agujas del reloj.
 - Vacíe por completo el baño, la aplicación externa, los accesorios y las mangueras.
- **6.** En caso necesario, limpie o lave el equipo (p. ej., con líquido caloportador nuevo).
 - En caso de cambio a otro líquido caloportador distinto, es preciso ajustar de nuevo con otros valores los límites de temperatura, el punto de desconexión por temperatura excesiva y el límite de salida del controlador.

10 Eliminación de residuos

10.1 Desechar el refrigerante

La eliminación del refrigerante se debe llevar a cabo de acuerdo con lo estipulado en el reglamento 2015/2067/UE en combinación con el reglamento (UE) 2024/573.

:AVISO!

Escape incontrolado de refrigerante

Medio ambiente

- No deseche ningún circuito de refrigeración que se encuentre bajo presión.
- Solo está permitida la eliminación de desechos por parte personal especializado.

La instrucción de seguridad indicada a continuación es relevante para los equipos que funcionan con refrigerante natural:

¡ATENCIÓN! Escape incontrolado de refrigerante

Explosión, incendio

- No deseche ningún circuito de refrigeración que se encuentre bajo presión.
- Solo está permitida la eliminación de desechos por parte personal especializado.

El tipo y el peso de llenado del refrigerante están indicados en la placa de características.

10.2 Eliminación del aparato

Para los estados miembros de la UE es válido lo siguiente: La eliminación del aparato como residuo se debe llevar a cabo conforme a la Directiva 2012/19/UE (RAEE, residuos de aparatos eléctricos y electrónicos).

10.3 Desechar embalaje

Para los estados miembros de la UE es válido lo siguiente: El desecho del embalaje debe realizarse de acuerdo con la directiva 94/62/CE.

11 Datos técnicos

Los datos se han determinado según la norma DIN 12876.

11.1 Datos generales

Tab. 37: Unidad de mando a distancia Base

Dato	Valor	Unidad
Tipo de pantalla	Pantalla gráfica monocroma OLED	
Tamaño de la pantalla		pulgadas
	61 x 30	mm
Resolución de pantalla	128 x 64	píxeles
Resolución de visualización	0,01	°C
Precisión de ajuste	0,01	°C

Tab. 38: Datos del equipo en conjunto

Dato	Valor	Unidad
Emplazamiento y utilización	En interiores	
Máxima altitud de emplazamiento sobre el nivel del mar	hasta 2000	m
Humedad del aire	Máxima humedad relativa del aire 80 % a una temperatura ambiente de 31 °C, disminución lineal hasta 40 °C y 50 %	
Rango de temperatura ambiente	5 – 40	°C
Grado de protección IP	IP 21	
Fluctuaciones de la tensión de alimentación	Hasta ±10 % de la tensión de consigna	
Clase de protección para equipos eléctricos DIN EN 61 140 (VDE 0140-1)	1	
Clasificación según DIN 12 876-1		
- Denominación de la clase	III	
- Identificación	FL (apropiado para líquidos inflamables y no inflamables)	
Estabilidad de temperatura de los termostatos de baño*	±0,01	K
Estabilidad de temperatura de los termostatos de circulación*	±0,05	K
Rango de temperatura de almacenamiento	5 – 40	°C
Rango de temperatura de transporte		
- Termostato de baño de calefacción	-20 – 50	
- Termostato de baño de refrigeración	-20 - 43	°C

Dato	Valor	Unidad
- Termostato de circulación de calefacción	-20 – 50	°C
- Termostato de circulación de refrigeración	-20 – 43	°C

^{*} Valor medido según la norma DIN 12876-2 (12/2001)

El nivel de intensidad acústica de los distintos equipos se ha medido conforme a las pautas recogidas en la especificación DIN EN ISO 11200 y las normas básicas citadas en esta. Los valores medidos corresponden a las condiciones de funcionamiento del uso típico de los equipos.

Tab. 39: Termostatos de baño de calefacción

	Unidad	P10	P 20	P 30
Rango de temperatura de trabajo	°C	40 - 250	35 – 250	30 – 250
Rango de tempe- ratura de funciona- miento (con refrigera- ción externa)	°C	-30 – 250	-30 – 250	-30 – 250
Dimensiones del aparato (an x pr)	mm	310 x 335	350 x 475	400 x 600
Altura del equipo (H) con Base	mm	365	365	365
Abertura del baño (An x Pr)	mm	240 x 150	300 x 290	340 x 385
Profundidad del baño (H)	mm	200	200	200
Profundidad útil	mm	180	180	180
Volumen de llenado				
- máximo	1	10.0	20,0	28,5
- mínimo	1	5.5	11,0	15,5
Rosca de conexión del serpentín de refrigera- ción (solo equipos de calefacción)	pulgadas	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior
Nivel de intensidad acústica (1 m)	dB(A)	49	49	49
Peso	kg	13	19	23
Distancia al entorno				
- Por delante	mm	200	200	200
- Por detrás	mm	200	200	200

	Unidad	P10	P 20	P30
- Por la derecha	mm	200	200	200
- Por la izquierda	mm	200	200	200

Tab. 40: Termostatos de baño de refrigeración

	Unidad	RP 2040	RP 3035	RP 2045	RP1090	RP 2090	RP 10100
*Rango ACC	°C	-40 - 200	-35 – 200	-45 – 200	-90 - 200	-90 - 200	-100 – 200
Dimensiones del aparato (an x pr)	mm	400 x 565	440 × 600	400 x 565	440 × 600	500 x 600	500 x 600
Altura del equipo (H) con Base	mm	680	680	680	730	730	730
Abertura del baño (An x Pr)	mm	300 x 290	340 x 375	300 x 290	240 x 150	300 x 290	240 x 150
Profundidad del baño (H)	mm	200	200	200	200	200	200
Profundidad útil	mm	180	180	180	180	180	180
Volumen de llenado							
- máximo	1	21,0	29,5	21,0	11,0	21,0	11,0
- mínimo	1	12,5	17,5	12,5	6,5	12,5	6,5
Nivel de intensidad acústica (1 m)	dB(A)	52	52	53	54	54	54
Peso	kg	54	57	59	88	89	88
Distancia al entorno							
- Por delante	mm	200	200	200	200	200	200
- Por detrás	mm	200	200	200	200	200	200
- Por la derecha	mm	200	200	200	200	200	200
- Por la izquierda	mm	200	200	200	200	200	200

*El margen ACC (Active Cooling Control) según DIN 12876 es el margen de temperatura de funcionamiento en caso funcionamiento con máquina frigorífica activa.

Tab. 41: Termostatos de circulación de refrigeración y termostatos de circulación de calefacción

lab. 41. Termostatos de Circulat	Unidad	RP 240 E	RP 245 E	RP 250 E	RP 290 E	P2E
Rango ACC/rango de tem- peratura de trabajo	°C	-40 a 200	-45 a 200*	-50 a 200*	-90 a 200*	80 – 250
Rango de temperatura de funcionamiento (equipo de calefacción con refrigeración externa)	°C					-30 – 250
Dimensiones del aparato (an x pr)	mm	300 x 430	300 x 430	300 x 430	390 x 600	250 x 365
Altura del equipo (H) con Base	mm	675	675	675	685	425
Volumen de llenado						
- máximo	1	4,4	4,4	4,4	4,4	4,4
- mínimo	1	2,4	2,4	2,4	2,4	2,4
Datos de bombeo						
Presión de elevación máxima	bar	0,7	0,7	0,7	0,7	0,7
Succión de transporte máxima	bar	0,4	0,4	0,4	0,4	0,4
Presión para el máximo caudal de alimentación	l/min	22	22	22	22	22
Succión para el máximo caudal de alimentación	l/min	20	20	20	20	20
Rosca de conexión de la bomba	mm	M16 x 1				
Rosca de conexión del ser- pentín de refrigeración (solo equipos de calefacción)	pulgadas					Rosca G3/8" exte- rior y G1/4" interior
Nivel de intensidad acústica (1 m)	dB(A)	54	54	57	56	47
Peso	kg	46	46	47	79	16
Distancia al entorno						
- Por delante	mm	200	200	200	200	200
- Por detrás	mm	200	200	200	200	200
- Por la derecha	mm	200	200	200	200	200
- Por la izquierda	mm	200	200	200	200	200

^{*}El margen ACC (Active Cooling Control) según DIN 12876 es el margen de temperatura de funcionamiento en caso funcionamiento con máquina frigorífica activa.

11.2 Potencia de frío y agua de refrigeración

- Según la versión, los equipos se hacen funcionar con refrigerantes halogenados parcialmente y/o naturales. Los valores de potencia frigorífica medidos para los refrigerantes halogenados parcialmente no difieren de los de los refrigerantes naturales. La denominación y el volumen de llenado del refrigerante están especificados en el equipo, en la placa de características.
- La potencia de frío se mide a una temperatura determinada del líquido caloportador. Estos valores de temperatura se indican entre paréntesis. La temperatura ambiente para la medida asciende a 20 °C ya que la temperatura del líquido caloportador utilizada es la del etanol. Para la medición en aparatos refrigerados con agua, la temperatura del agua de refrigeración asciende a 15 °C como la presión diferencial del agua de refrigeración de 3 bar.
- Para que la refrigeración sea eficiente, el agua de refrigeración debe encontrarse al menos 5 –10 K por debajo de la temperatura ambiente del equipo.

Tab. 42: Datos sobre el agua de refrigeración

Dato	Valor
Presión máxima del agua de refrigeración	10 bar
Presión diferencial mínima del agua de refrigeración (entrada - salida) Δ p	O bar
Presión diferencial máxima del agua de refrigeración (entrada - salida) Δ p	3,0 bar
Temperatura del agua de refrigera- ción	Recomendada 15 °C, admisible 10 a 30 °C (en la parte superior del margen de temperatura con potencia frigorífica reducida)
Diámetro de las mangueras de agua de refrigeración	10 mm

Mangueras para el agua de refrigeración

Para las olivas entregadas junto con el equipo se recomienda usar mangueras de 10 mm de diámetro interno.

Tab. 43: Máquina frigorífica de 1 etapa

	Unidad	RP 2040	RP 3035	RP 2045	Etapa de la bomba
Potencia de frío					
a 20 °C	W	800	800	1500	8

	Unidad	RP 2040	RP 3035	RP 2045	Etapa de la bomba
a 10 °C	W	800	800	1430	8
a 0 °C	W	800	800	1170	8
a -10 °C	W	600	580	840	8
a -20 °C	W	400	350	520	4
a -30 °C	W	190	160	280	4
a -35 °C	W	110	100	200	4
a -40 °C	W	60		130	4
a -45 °C	W			70	4
a -50 °C	W				
Conexiones para el agua de refrigeración	pulgadas	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior	
Caudal del agua de refrigeración a una temperatura de 15°C	l/min	1 bar ⇒ 2,1	1 bar ⇒ 2,1	1 bar ⇒ 1,3	

	Unidad	RP 240 E	RP 245 E	RP 250 E	Etapa de la bomba
Potencia de frío					
a 20 °C	W	600	800	1500	8
a 10 °C	W	600	800	1440	8
a 0 °C	W	600	800	1200	8
a -10 °C	W	410	530	840	8
a -20 °C	W	240	340	540	4
a -30 °C	W	120	150	290	4
a -35 °C	W	70	90		4
a -40 °C	W	20*	40	110	4
a -45 °C	W		10*	40	4
a -50 °C	W			20	2
Conexiones para el agua de refrigeración	pulgadas	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior	Rosca G3/8" exterior y G1/4" interior	
Caudal del agua de refrigeración a una temperatura de 15°C	l/min	1 bar ⇒ 2,1	1 bar ⇒ 2,1	1 bar ⇒ 2,1	

^{*} Medido para la etapa 2 de la bomba

Tab. 44: Máquina frigorífica de 2 etapas

	Unidad	RP 1090	RP 2090	RP 10100	RP 290 E	Etapa de la bomba
Potencia de frío						
a 20 °C	W	800	800	400	800	8
a 10 °C	W	750	710	400	770	8
a 0 °C	W	720	680	400	740	8
a -10 °C	W	690	650	400	720	8
a -20 °C	W	660	620	400	700	4
a -30 °C	W	630	610	390	680	4
a -40 °C	W	600	580	370	640	4
a -50 °C	W	540	520	350	540	4
a -60 °C	W	370	340	320	390	4
a -70 °C	W	240	180	250	210	4
a -80 °C	W	110	70	170	90	4
a -90 °C	W	20	10	60	10*	4
a -100 °C	W			10		4
Conexiones para el agua de refrigeración	pulgadas	Rosca G3/8" exterior y G1/4" inte- rior				
Caudal del agua de refrigeración a una temperatura de 15°C	l/min	1 bar ⇒ 2,1				

^{*} Medido para la etapa 2 de la bomba

11.3 Refrigerante y peso de llenado

Aparatos con refrigerante halogenado parcialmente

El equipo contiene gases fluorados de efecto invernadero.

Tab. 45: Máquina frigorífica de una etapa

	Unidad	RP 2040*	RP 3035*	RP 2045*
Refrigerante		R-404A	R-404A	R-404A
Peso máximo de llenado	kg	0,25	0,25	0,3
GWP _(100a) *		3922	3922	3922
Equivalente de CO ₂	t	1,0	1,0	1,2

	Unidad	RP 240 E	RP 245 E	RP 250 E
Refrigerante		R-449A	R-449A	R-452A
Peso máximo de llenado	kg	0,3	0,3	0,3
GWP _(100a) *		1397	1397	2140
Equivalente de CO ₂	t	0,4	0,4	0,6

^{*} Sólo disponible fuera de la UE

Aparatos con refrigerante halogenado parcialmente y natural

El equipo contiene gases fluorados de efecto invernadero.

Tab. 46: Máquina frigorífica de dos etapas

	Unidad	RP 1090	RP 2090	RP 10100	RP 290 E
Refrigerante (1.ª etapa)		R-404A	R-404A	R-404A	R-452A
Peso máximo de llenado (1.ª etapa)	kg	0,26	0,26	0,22	0,3
GWP _(100a) *		3922	3922	3922	2140
Equivalente de CO ₂	t	1,0	1,0	0,9	0,6
Refrigerante (2.ª etapa)		R-170	R-170	R-1150	R-170
Peso máximo de llenado (2.ª etapa)	kg	0,08	0,08	0,06	0,07
GWP _(100a) *		3	3	3	3

Aparatos con refrigerante natural

Tab. 47: Máquina frigorífica de una etapa

	Unidad	RP 2040	RP 3035	RP 2045
Refrigerante natural		R-290	R-290	R-290
Peso máximo de llenado	kg	0,099	0,099	0,149
GWP _(100a) *		3	3	3

	Unidad	RP 240 E	RP 245 E	RP 250 E
Refrigerante natural		R-290	R-290	R-290
Peso máximo de llenado	kg	0,12	0,12	0,14
GWP _(100a) *		3	3	3

Aparatos con refrigerante natural

Tab. 48: Máquina frigorífica de dos etapas

	Unidad	RP 1090	RP 2090	RP 10100	RP 290 E
Refrigerante (1.ª etapa)		R-290	R-290	R-290	R-290
Peso máximo de llenado (1.ª etapa)	kg	0,11	0,11	0,099	0,12
GWP _(100a) *		3	3	3	3
Refrigerante (2.ª etapa)		R-170	R-170	R-1150	R-170
Peso máximo de llenado (2.ª etapa)	kg	0,08	0,08	0,06	0,07
GWP _(100a) *		3	3	3	3

Potencial de calentamiento global (Global Warming Potential o GWP), comparado con CO_2 = 1,0

11.4 Valores máximos de consumo de corriente y potencia calorífica

*Según el cable de alimentación suministrado, el máximo consumo de corriente se encuentra limitado de fábrica \$\ Capítulo 5.11.5 \
«Limitar el consumo de corriente» en la página 77.

Tab. 49: Baño termostático de calefacción y termostatos de circulación de calefacción

		Potencia calorífica en kW			
Fuente de alimentación	Ajuste del con- sumo de corriente*	P10	P 20	P30	P2E
200-230 V; 50/60 Hz	12 A				1,9 - 2,5
200-230 V; 50/60 Hz	13 A	2,6 - 3,0	2,6 - 3,0	2,6 - 3,0	
200-230 V; 50/60 Hz	15 A	2,7 - 3,4	2,7 - 3,4	2,7 - 3,4	
200-230 V; 50/60 Hz	16 A	2,7 - 3,6	2,7 - 3,6	2,7 - 3,6	
100-120 V; 50/60 Hz	16 A	1,3 – 1,9	1,3 – 1,9	1,3 – 1,9	1,3 - 1,8

^{*} Plazo de 100 años, según IPCC IV

Tab. 50: Baño termostático de refrigeración

			Potencia calorífica en kW				
Fuente de ali- mentación	Ajuste del con- sumo de corriente*	RP 2040	RP 2045	RP 3035	RP 1090	RP 2090	RP 10100
230 V; 50 Hz	13 A	3,0	3,0	3,0	3,0	3,0	3,0
230 V; 50 Hz	15 A	3,4	3,4	3,4	3,4	3,4	3,4
230 V; 50 Hz	16 A	3,6	3,6	3,6	3,6	3,6	3,6
208-220 V; 60 Hz	13 A	2,7 - 2,9	2,7 - 2,9	2,7 - 2,9	2,7 - 2,9	2,7 - 2,9	2,7 - 2,9
208-220 V; 60 Hz	16 A	2,9 - 3,3	2,9 - 3,3	2,9 - 3,3	2,9 - 3,3	2,9 - 3,3	2,9 - 3,3
200 V; 50/60 Hz	16 A	2,7	2,7	2,7	2,7	2,7	2,7
120 V; 60 Hz	16 A	1,9		1,9			
100 V; 50/60 Hz	15 A	1,3		1,3			
100 V; 50/60 Hz	16 A	1,3		1,3			

Tab. 51: Termostatos de circulación de refrigeración PRO

		Potencia calorífica en kW				
Fuente de alimentación	Ajuste del con- sumo de corriente*	RP 240 E	RP 245 E	RP 250 E	RP 290 E	
230 V; 50 Hz	13	2,5	2,5			
230 V; 50 Hz	15	2,5	2,5			
230 V; 50 Hz	16	2,5	2,5	2,5	2,5	
208-220 V; 60 Hz	13	2,1 - 2,3	2,1 - 2,3			
208-220 V; 60 Hz	16	2,1 - 2,3	2,1 - 2,3	2,0 - 2,3	2,0 - 2,3	
200 V; 50/60 Hz	16	1,9	1,9	1,9	1,9	
120 V; 60 Hz	16	1,8	1,8			
100 V; 50/60 Hz	15	1,3	1,3			
100 V; 50/60 Hz	16	1,3	1,3			

11.5 Curva característica de la bomba

PUMP CHARACTERISTICS Water

Pressure bar

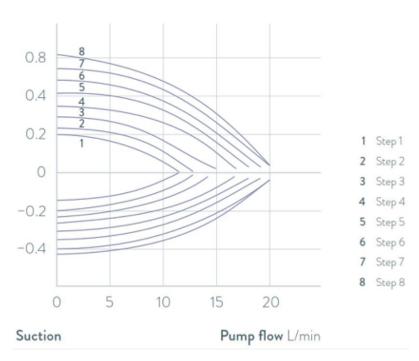


Fig. 71: Curvas características de las bombas de los termostatos de circulación

12 Accesorios

Los accesorios opcionales siguientes están disponibles para los equipos PRO.

Tab. 52: Compartimento modular de 51 mm x 27 mm

Accesorios	Número de pedido
Módulo de interfaces analógico	LRZ 912
Módulo de interfaces RS232/485	LRZ 913
Módulo de interfaces de contacto con 1 entrada y 1 salida	LRZ 914
Módulo de interfaces de contacto con 3 entradas y 3 salidas	LRZ 915
Módulo de interfaces Profibus	LRZ 917
Módulo de interfaces Ethernet/USB	LRZ 921
Módulo de interfaces EtherCat, conexión casquillos M8	LRZ 922
Módulo de interfaces EtherCat, conexión casquillos RJ45	LRZ 923

Tab. 53: Clavija de conexión

Accesorios	Número de pedido
Sensor de temperatura externo con conector y cable de conexión apantallado	ETP 059
Conector de acoplamiento, de 6 polos para entradas/salidas analógicas	EQS 057
Clavija de conexión SUB-D de 9 polos	EQM 042
Cable RS232 (longitud: 2 m) para PC	EKS 037
Cable RS232 (longitud: 5 m) para PC	EKS 057
Clavija de acoplamiento de 3 polos para entrada de contactos	EQS 048
Caja de acoplamiento de 3 polos para salida de contactos	EQD 047

Accesorios	apropiados para	Número de pedido
Unidad de mando a distancia Command Touch	Todos los equipos	LRT 923

13 Aspectos generales

13.1 Derechos de autor

Este manual se encuentra protegido por derechos de autor y únicamente se encuentra destinado para uso interno del comprador.

Salvo para fines internos, está prohibido ceder estas instrucciones a terceros, reproducirlas de cualquier forma – aunque sea en extractos – y reutilizar o comunicar su contenido sin una autorización escrita del fabricante.

La infracción de esta prohibición obligará a una indemnización por daños y perjuicios. Quedan reservados otros derechos.

Queremos señalar que las denominaciones y marcas de empresas utilizadas en el manual están sujetas, por regla general, a la legislación de protección de patentes y marcas comerciales.

13.2 Modificaciones técnicas

El fabricante se reserva el derecho a introducir modificaciones técnicas en el equipo.

13.3 Condiciones de garantía

LAUDA otorga de manera estándar un año de garantía a los aparatos.

13.4 Contacto LAUDA

Póngase en contacto con el servicio de LAUDA en los siguientes casos:

- Resolución de problemas
- Preguntas técnicas
- Pedido de accesorios y piezas de recambio

Si tiene preguntas específicas sobre la aplicación, póngase en contacto con nuestro departamento de ventas.

Datos de contacto

Servicio LAUDA

Teléfono: +49 (0)9343 503-350 Correo electrónico: service@lauda.de

13.5 Declaración de conformidad

°LAUDA

DECLARACIÓN DE CONFORMIDAD EU

Fabricante: LAUDA DR. R. WOBSER GMBH & CO. KG

Laudaplatz 1, 97922 Lauda-Königshofen, Alemania

Declaramos bajo nuestra exclusiva responsabilidad que las máquinas descritas a continuación

Línea de productos: PRO Número de serie: a partir de S210000001

Modelos: P 10, P 20, P 30, P 2 E, Bomba auxiliar PRO

cumplen con todas las disposiciones pertinentes de las directivas CE enumeradas a continuación en lo relativo a su diseño y construcción en la versión comercializada por nosotros:

Directiva de máquinas 2006/42/CE Directiva CEM 2014/30/UE

Directiva RoHS 2011/65/UE en relación con (EU) 2015/863

Los equipos no están contemplados en la directiva de equipos a presión 2014/68/UE, ya que la clasificación máxima del equipo es la categoría 1 y está contemplada en la directiva de máquinas.

Los objetivos de protección de la directiva de máquinas en materia de seguridad eléctrica se cumplen de conformidad con el anexo I, apartado 1.5.1, y con la directiva de baja tensión 2014/35/UE.

Normas aplicadas:

- EN ISO 12100:2010
- EN 61326-1:2013
- EN 55011:2016 + A1:2017
- EN 61000-6-3:2007/A1:2011/AC:2012
- EN IEC 61000-6-2:2019
- EN 61326-3-1:2018
- EN 61010-1:2010/A1:2019/AC:2019-04
- EN 61010-2-010:2014

Representante autorizado para la elaboración de la documentación técnica:

Dr. Jürgen Dirscherl, director de Investigación y Desarrollo

Lauda-Königshofen, 23-09-2021

Dr. Alexander Dinger, director de Gestión de Calidad

A. Dinjer

Número de documento: Q5WA-QA13-003-ES

°FAHRENHEIT. °CELSIUS. °LAUDA.

DECLARACIÓN DE CONFORMIDAD EU

Fabricante: LAUDA DR. R. WOBSER GMBH & CO. KG

Laudaplatz 1, 97922 Lauda-Königshofen, Alemania

Declaramos bajo nuestra exclusiva responsabilidad que las máquinas descritas a continuación

Línea de productos: PRO Número de serie: a partir de S210000001

Modelos: RP 3035, RP 2040, RP 2045, RP 1090, RP 2090, RP 10100,

RP 240 E, RP 245 E, RP 250 E, RP 290 E

cumplen con todas las disposiciones pertinentes de las directivas CE enumeradas a continuación en lo relativo a su diseño y construcción en la versión comercializada por nosotros:

Directiva de máquinas 2006/42/CE
Directiva de Baja Tensión 2014/35/UE
Directiva CEM 2014/30/UE

Directiva RoHS 2011/65/UE en relación con (EU) 2015/863

Los equipos no están contemplados en la directiva de equipos a presión 2014/68/UE, ya que la clasificación máxima del equipo es la categoría 1 y está contemplada en la directiva de máquinas.

Los objetivos de protección de la directiva de máquinas en materia de seguridad eléctrica se cumplen de conformidad con el anexo I, apartado 1.5.1, y con la directiva de baja tensión 2014/35/UE.

Normas aplicadas:

- EN ISO 12100:2010
- EN 378-2:2016
- EN 61326-1:2013
- EN 55011:2016 + A1:2017
- EN 61000-6-3:2007/A1:2011/AC:2012
- EN IEC 61000-6-2:2019
- EN 61326-3-1:2018
- EN 61010-1:2010/A1:2019/AC:2019-04
- EN 61010-2-010:2014

Representante autorizado para la elaboración de la documentación técnica:

Dr. Jürgen Dirscherl, director de Investigación y Desarrollo

Lauda-Königshofen, 23-07-2021

Dr. Alexander Dinger, director de Gestión de Calidad

Versión 05

Número de documento: Q5WA-QA13-003-ES

°FAHRENHEIT. °CELSIUS. °LAUDA.

°LAUDA

DECLARACIÓN DE CONFORMIDAD CE

Fabricante: LAUDA DR. R. WOBSER GMBH & CO. KG

Laudaplatz 1, 97922 Lauda-Königshofen, Alemania

Declaramos bajo nuestra exclusiva responsabilidad que los dispositivos descritos a continuación

Linea de productos: Unidades de mando Base y Command Touch

Número de serie: a partir de S21000001

Modelos: Base, número de pedido LRT 922,

Command Touch, número de pedido LRT 923

cumplen con todas las disposiciones pertinentes de las directivas CE enumeradas a continuación en lo relativo a su diseño y construcción en la versión comercializada por nosotros:

Directiva CEM 2014/30/UE

Directiva RoHS 2011/65/UE en relación con (EU) 2015/863

Normas aplicadas:

- EN IEC 61326-1:2021
- EN 61326-3-1:2017
- EN 55011:2016 + A1:2017
- EN 61000-6-3:2007/A1:2011/AC:2012
- EN IEC 61000-6-2:2019
- EN 61010-1:2010 + A1:2019 + A1:2019/AC:2019

Representante autorizado para la elaboración de la documentación técnica:

Dr. Jürgen Dirscherl, Director de Investigación y Desarrollo

Lauda-Königshofen, 26-06-2023

A. Dinjer Dr. Alexander Dinger,

Responsable de Gestión de Calidad y Medio Ambiente

Q5WA-QA13-016-ES

Versión 04

°FAHRENHEIT. °CELSIUS. °LAUDA.

13.6 Devolución de mercancías y declaración de no objeción

Devolución de mercancías

¿Desea devolver a LAUDA un producto que ha adquirido de LAUDA? Para la devolución de mercancías, por ejemplo, para su reparación o en caso de reclamación, necesita una autorización de LAUDA en forma de Return Material Authorization (RMA) o un número de procesamiento. Puede obtener este número de RMA en nuestro servicio de atención al cliente en el número +49 (0) 9343 503 350 o por correo electrónico en la dirección service@lauda.de.

Dirección de devolución

LAUDA DR. R. WOBSER GMBH & CO. KG

Laudaplatz 1

97922 Lauda-Königshofen

Alemania/Germany

Identifique su envío de forma claramente visible con el número RMA. Además, adjunte esta declaración cumplimentada.

Número RMA	Número de serie del producto
Cliente/entidad explotadora	Nombre de contacto
Correo electrónico de contacto	Teléfono de contacto
Código postal	Localidad
Calle y número	
Aclaraciones adicionales	

Declaración de no objeción

Por la presente, el cliente/la entidad explotadora confirma que el producto enviado con el número RMA arriba indicado ha sido vaciado y limpiado cuidadosamente, que las conexiones existentes están cerradas en la medida de lo posible y que sobre o en el producto no hay sustancias explosivas, oxidantes, peligrosas para el medio ambiente, biopeligrosas, tóxicas, radiactivas u otras sustancias peligrosas.

Lugar, fecha	Nombre en letra de imprenta	Firma

14 Glosario

Cliente DHCP (Dynamic Host Configuration Protocol Client)

Dirección IP (Internet Protocol Address)

Dirección IP local

Interfaz de proceso

IP automática

MAC (Media Access Control)

Máscara local

NTP (Network Time Protocol)

Puerta de enlace

Puerto

Servidor DNS (Domain Name Service Server)

TCP (Transmission Control Protocol)

Versión IP

Un cliente DHCP permite integrar automáticamente la interfaz Ethernet en una red ya existente. Gracias a ello deja de ser necesario integrar manualmente la interfaz en la red existente.

Cada uno de los equipos de una red de datos necesita una dirección con la que se le pueda identificar de manera unívoca. Solo así se puede asegurar, por ejemplo, que el flujo de datos llegue hasta el equipo correcto. Cuando se efectúa una llamada a una página de internet, el navegador siempre transmite también la dirección IP de su equipo. Ello se debe a que esta es la única manera de que el servidor web sepa a dónde debe enviar el paquete de datos deseado. El protocolo de internet (Internet Protocol, IP) es un estándar de red de amplia difusión que especifica cómo se debe intercambiar la información.

La dirección IP local es la dirección de la interfaz Ethernet en la red local. Esta dirección permite acceder a la interfaz Ethernet en la red local. Si el cliente DHCP está desactivado, es preciso configurar manualmente la dirección IP local y la máscara local. Para llevar a cabo este ajuste manual, póngase en contacto previamente con su departamento de TI.

En los equipos de termorregulación de LAUDA, la interfaz de proceso es la que permite el control o la supervisión del equipo de termorregulación a través de Ethernet mediante el uso del juego de comandos de interfaz de LAUDA.

IP automática es un procedimiento estandarizado mediante el cual dos o más participantes se ponen de acuerdo sobre una misma configuración de red.

El Media Access Control es una dirección de hardware prácticamente única en el mundo, que sirve para identificar el equipo de manera inequívoca en una red Ethernet.

Las máscaras locales (de subred) se emplean para adaptar con flexibilidad la estricta clasificación de las direcciones IP en las redes y en los ordenadores a las circunstancias reales.

El Network Time Protocol es un estándar de sincronización de la hora y la fecha en las redes.

Se utiliza una puerta de enlace para intercomunicar redes diferentes. En este campo se especifica una dirección IP mediante la cual se puede acceder a una puerta de enlace en la red local.

Un puerto es un número que se utiliza para establecer la comunicación entre dos participantes de una red. El puerto es una parte de la dirección de red. El puerto para la interfaz Ethernet se puede utilizar del rango habilitado "Dynamic Ports". Este va de 49152 a 65535.

El servicio de nombres de dominio (Domain Name Service, DNS) es una base de datos en la que se guarda principalmente información sobre nombres y direcciones IP de ordenadores. Un DNS permite, p. ej., relacionar una dirección de la web o una URL (Uniform Resource Locator) con una dirección IP. A la interfaz Ethernet se le indica la dirección IP del servidor DNS disponible en la red conectada.

Este protocolo de red define cómo deben intercambiarse los datos

entre los componentes de la red.

Proporciona información sobre el estándar de internet: IPv4 o IPv6.

Un ejemplo conocido de dirección IP es 192.168.0.1. Esta dirección presenta la estructura propia del estándar IPv4: cuatro cifras en el rango de 0 a 255, con cada cifra separada de la siguiente por un punto. No obstante, este sistema tan solo permite representar un número limitado de combinaciones.

De ahí que haya direcciones IP cuya estructura está basada en la versión 6 del estándar (IPv6). Se distinguen porque están formadas por ocho bloques de caracteres que incluyen tanto números como letras, como en este ejemplo: fe80:0010:0000:0000:0000:0000:0000:0001. Dado que resulta algo difícil de ver con claridad, una cadena larga de ceros se puede sustituir por el carácter de dos puntos. Así pues, la forma abreviada de la dirección IPv6 del ejemplo tendría el aspecto siguiente: fe80:0010::1.

15 Índice

A	Bomba
Accesorios	Ajuste del nivel
De serie	Ajuste del nivel de capacidad volumétrica 8
Módulos	Ajuste del nivel de potencia 87
Advertencia	Función SteadyFlow
Sistema de control	С
Sistema de seguridad	
SmartCool	Calibración (temperatura real)
Agitador	Fijar
Ajuste del nivel	Calibración de fábrica
Agua de refrigeración	Cambiar
Conectar	Señales acústicas
Requisitos	Categoría de emisiones
Ajustar el brillo (pantalla)	Código
Ajustar el brillo de la pantalla	Advertencias (sistema de control)
Ajuste	Advertencias (sistema de seguridad)
Definición del límite de salida del controlador 82	Advertencias (SmartCool)
Ajuste del consumo de corriente	Colector de suciedad
Ajuste del volumen (señales acústicas)	Compensar (temperatura real)
Alarma	Calibración
Códigos	Compresor
Alarmas	Comprobar
	Líquido caloportador
Aparato Consultar datos	Protección contra exceso de temperatura 106
Desechar (embalaje)	Protección contra nivel bajo
3	Tmax
Eliminación (refrigerante)	Condensador
	limpiar (refrigeración por agua) 105
	limpiar (refrigerado por aire)
Arranque automático	Conexión
Desactivar	Conexión a aplicación externa
Asidero (posición)	Conexión del serpentín de refrigeración (posición) 16
Auto-comienzo	Consultar los datos de configuración (equipo) 99
Activar	Contacto
В	Control
Base	Advertencias
Estructura del menú	Control externo
Bastidores	activar
Bloqueo de teclas	Definición de la compensación del punto de consigna

Copyright	Evaporador
Cracken	Expansión
D	F
Derechos de autor	Fallo
Desbloqueo	Función SteadyFlow
Descalcificación	,
Desechar	G
Embalaje	Ganancia
Refrigerante	Garantía
Desechar el refrigerante	Н
Desembalaje	Híbrida
Determinación del idioma (pantalla) 78	HyperTerminal
Determinación del idioma del menú	1 Type 1 Te 1 Time 1 Te 1
DIN EN 378-1	I
Disipación de calor	Inicio
'	Segmento
E	Instrucciones de seguridad
Embalaje	generales
Desechar	Interfaz
Emplazamiento (equipo)	Explicación
Equipo	Visión general
Conexión	Interrupción del suministro eléctrico (modo de funcio-
Descalcificar (refrigeración por agua) 105	namiento)
Descontaminación	Intervalos
Desembalaje	Mantenimiento
Emplazamiento	K
Limpiar condensadores (refrigerado por aire) 103	Kpe
Limpieza	кре 93
Llenado	L
Vaciado	lavar
Vaciar el condensador (refrigerado por agua) 106	Leer la memoria (errores)
Equipos de protección (individual, resumen)	Limitación de corrección
Equipos de protección individual (resumen)	Límites de temperatura
Equivalente de CO2	ajuste
Error	Limpieza
Leer la memoria	Líquido caloportador
Módulos	Comprobar
Establecimiento de la fuente de alimentación 65	Eliminar
Establecimiento del suministro de corriente 65	lavar
Estructura del menú	Llenar
Base	Lugar de emplazamiento

M	Interrupción
Mangueras	Programa terminal
Máquina frigorífica	Prop_E
Función	Protección contra exceso de temperatura
Menú de control	ajuste
Módulo de interfaces	Comprobar
Montar	Definición
Módulo RS 485	Protección contra nivel bajo
Conectar	Comprobar
Módulos	Definición
Accesorios	Puesto de mando
N	R
N2	Racor de bombeo (posición)
Nitrógeno	Racor de vaciado del baño (posición) 16, 18
Conexión	Rango proporcional
	Refrigeración por agua
O	Vaciado
Optimización del programa	Refrigerado por agua
Explicación	Conexión (posición)
Р	Vaciar el condensador
Panel frontal (posición)	Refrigerado por aire
Pantalla	Limpieza del condensador
Parámetros de regulación	Refrigerante
Acceso	combustible
Adaptación (interna)	fluorado
Adaptar (externo)	Peso de llenado
Externo (vista general)	Regulación interna
Interno (vista general)	activar
Patas (posición)	regular
Peligro de congelación	Rejilla de ventilación (posición)
Peso de llenado	Resistencia a interferencias
Placa de características	Retícula temporal
Equipo (posición)	S
Plataformas ajustables	
Plataformas de elevación	Segmento
Potencia calorífica	Inicio
reducir	Señal acústica (ajuste)
Programa	Serpentín de refrigeración
Ejemplo	Servicio posventa
Finalización	Sistema de seguridad (advertencias)
Inicio 88	SmartCool (advertencias)

Softkey (posición)
Activar
Desactivar
supervisar
Т
Tapa para baño (posición)
Td
Tde
Tecla
Desbloqueo
Tecla de introducción de datos (posición) 67
Teclas de pantalla
Manejo
Teclas del cursor (posición) 67
Temp. de consigna
Temperatura máxima
Termostato de baño
Estructura
Termostato de circulación
Conexión a aplicación externa
Mangueras
Montaje
Tiempo de acción derivativa
Tiempo de acción integral
Tiempo de amortiguación
Tih, Til
Til, Tih
Tmax
Ajustar
ajuste
Comprobar
Posición
Tn
Tne
Tv
Tve
U
Unidad de mando a distancia (posición)
USB

Uso adecuado
V
Vaciado
Condensador (refrigerado por agua) 106
Equipo
Valores límite (temperatura)
ajuste
Versión (software)
Versión del software
Visualizar el número de serie (equipo)
X
Xp 90,92
Xpf93

